Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.

Title Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.
Authors M.A. Gondal; M.A. Dastageer; L.E. Oloore; U. Baig; S.G. Rashid
Journal J Environ Sci Health A Tox Hazard Subst Environ Eng
DOI 10.1080/10934529.2017.1305173
Abstract

Ordered mesoporous indium oxide nanocrystal (m-In2O3) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In2O3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In2O3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In2O3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO2) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg(-1) h(-1) after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO2 into methanol.

Citation M.A. Gondal; M.A. Dastageer; L.E. Oloore; U. Baig; S.G. Rashid.Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017:19. doi:10.1080/10934529.2017.1305173

Related Elements

Indium

See more Indium products. Indium (atomic symbol: In, atomic number: 49) is a Block P, Group 13, Period 5 element with an atomic weight of 114.818. The number of electrons in each of indium's shells is [2, 8, 18, 18, 3] and its electron configuration is [Kr] 4d10 5s2 5p1. The indium atom has a radius of 162.6 pm and a Van der Waals radius of 193 pm. Indium was discovered by Ferdinand Reich and Hieronymous Theodor Richter in 1863. Indium Bohr ModelIt is a relatively rare, extremely soft metal is a lustrous silvery gray and is both malleable and easily fusible. It has similar chemical properties to Elemental Indiumgallium such as a low melting point and the ability to wet glass. Fields such as optics and microelectronics that utilize semiconductor technology have wide uses for indium, especially in the form of Indiun Tin Oxide (ITO). Thin films of Copper Indium Gallium Selenide (CIGS) are used in high-performing solar cells. Indium's name is derived from the Latin word indicum, meaning violet.

Related Forms & Applications