Exploiting multivariate calibration for compensation of iron interference in the spectrophotometric flow-based catalytic determination of molybdenum.

Title Exploiting multivariate calibration for compensation of iron interference in the spectrophotometric flow-based catalytic determination of molybdenum.
Authors E. Oliveira; C. Henríquez; L.C. Nunes; E.A.G. Zagatto
Journal Talanta
DOI 10.1016/j.talanta.2017.10.037
Abstract

Multivariate calibration involving partial least squares was exploited in the flow-based spectrophotometric determination of molybdenum in river waters relying on the Mo(VI)-catalyzed iodide oxidation by H2O2 under acidic conditions. Two sample aliquots were simultaneously inserted into the carrier stream, and differential pumping was accountable for in-line addition of sulfuric acid to one of them. Pronounced gradients (acidity and reagent concentrations) were established along the complex sample zone formed, and the absorbance-time function was characterized by local maximum and minimum values. As these values were intrinsically more precise, they were used for implementing the PLS multivariate calibration. Mo(VI) and Fe(III) were jointly determined, and Fe(III) interference was straightforwardly circumvented. Influence of reagent concentrations, acidity, available time for reaction development, and nature of the acid was investigated, and this later parameter manifested itself as relevant for discriminating purposes. The calibration set consisted of 6.2 - 50.0?gL-1 Mo(VI) plus 0.5 - 7.0mgL-1 Fe(III) solutions. The PLS model was characterized by good prediction ability [RMSEP = 0.67?gL-1 for Mo(VI)]. The innovation was applied to spiked river waters, and analytical precision, sampling rate, recovery, detection limit and reagent consumption were estimated as 0.5 - 2.4%, 31h-1, 98-114%. 0.88?gL-1 Mo(VI), and 54.0mg KI per determination, respectively. Results were in agreement with ICP OES.

Citation E. Oliveira; C. Henríquez; L.C. Nunes; E.A.G. Zagatto.Exploiting multivariate calibration for compensation of iron interference in the spectrophotometric flow-based catalytic determination of molybdenum.. Talanta. 2018;179:1521. doi:10.1016/j.talanta.2017.10.037

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.