Expression of the potassium-chloride co-transporter, KCC2, within the avian song system.

Title Expression of the potassium-chloride co-transporter, KCC2, within the avian song system.
Authors C.E. Vaaga; K.E. Miller; Á.L. Bodor; D.J. Perkel
Journal J Comp Neurol
DOI 10.1002/cne.24372

Songbirds learn to produce vocalizations early in life by listening to, then copying the songs of conspecific males. The anterior forebrain pathway, homologous to a basal ganglia-forebrain circuit, is essential for song learning. The projection between the striato-pallidal structure, Area X, and the medial portion of the dorsolateral thalamic nucleus (DLM) is strongly hyperpolarizing in adults, due to a very negative chloride reversal potential (Person & Perkel, Neuron 46:129-140, 2005). The chloride reversal potential is determined, in part, by the expression level of a neuron-specific potassium-chloride cotransporter, KCC2, which is developmentally upregulated in mammals. To determine whether a similar upregulation in KCC2 expression occurs at the Area X to DLM synapse during development, we examined the expression level of KCC2 in adult zebra finches across the song system as well as during development in the Area X - DLM synapse. We demonstrate that KCC2 is expressed in a subset of neurons throughout the song system, including HVC (used as a proper name), robust nucleus of the arcopallium (RA), lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and DLM. The majority of pallidal-like projection neurons in Area X showed KCC2 immunoreactivity. In adults, KCC2 expression was robust within DLM, and was upregulated between 14 and 24 days post hatching, before the onset of song learning. Light and electron microscopic analysis indicated that KCC2 immunoreactivity is strongly associated with the plasma membrane. Thus, in the song system as in the mammalian brain, KCC2 expression is well placed to modulate the GABAreversal potential.

Citation C.E. Vaaga; K.E. Miller; Á.L. Bodor; D.J. Perkel.Expression of the potassium-chloride co-transporter, KCC2, within the avian song system.. J Comp Neurol. 2018;526(6):944956. doi:10.1002/cne.24372

Related Elements


Elemental PotassiumSee more Potassium products. Potassium (atomic symbol: K, atomic number: 19) is a Block S, Group 1, Period 4 element with an atomic weight of 39.0983. The number of electrons in each of Potassium's shells is [2, 8, 8, 1] and its electron configuration is [Ar] 4s1. The potassium atom has a radius of 227.2 pm and a Van der Waals radius of 275 pm. Potassium was discovered and first isolated by Sir Humphrey Davy in 1807. Potassium is the seventh most abundant element on earth. It is one of the most reactive and electropositive of all metals and rapidly oxidizes. As with other alkali metals, potassium decomposes in water with the evolution of hydrogen because of its reacts violently with water, it only occurs in nature in ionic salts.Potassium Bohr Model In its elemental form, potassium has a silvery gray metallic appearance, but its compounds (such as potassium hydroxide) are more frequently used in industrial and chemical applications. The origin of the element's name comes from the English word 'potash,' meaning pot ashes, and the Arabic word qali, which means alkali. The symbol K originates from the Latin word kalium.


Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Related Forms & Applications