Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications.

Title Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications.
Authors P. Venkateswarlu; E. Umeshbabu; N. Kumar; P. Nagaraja; P. Tirupathi; R. Rao; P. Justin
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.05.007
Abstract

A facile hydrothermal method has been adopted to synthesize the spherical urchin-like hierarchical CoMn2O4 nanostructures on the nickel foam substrate. The as-synthesized urchins have an average diameter of ?3-7?m with numerous self-assembled nanoneedles grown radically in all the directions from its center with a huge void space between them. For comparison, we have also studied the electrochemical as well as other physicochemical properties of parent simple Co3O4 and MnO2 materials, which were also synthesized by a similar hydrothermal method. The results show that CoMn2O4 electrode displayed significantly higher (more than two times) areal and specific capacitances compared to Co3O4 and MnO2 electrodes with excellent capacitance retention and Coulombic efficiency. Moreover, the energy and power densities obtained for CoMn2O4 electrode are also far higher than the parent Co3O4 and MnO2. Long-term cycling tests of CoMn2O4 electrode shows the improved capacitance with high rate capability up to 6000 cycles indicating their potential for high performance supercapacitor applications. The better electrochemical performance of CoMn2O4 electrode can be attributed to the smart urchin-like nanostructures, which has several advantages like, more electroactive sites for faradic reactions emerging from the two metal ions, higher electronic/ionic conductivity and fast electrolyte transportation kinetics promoted by unique morphology.

Citation P. Venkateswarlu; E. Umeshbabu; N. Kumar; P. Nagaraja; P. Tirupathi; R. Rao; P. Justin.Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications.. J Colloid Interface Sci. 2017;503:1727. doi:10.1016/j.jcis.2017.05.007

Related Elements

Cobalt

See more Cobalt products. Cobalt (atomic symbol: Co, atomic number: 27) is a Block D, Group 9, Period 4 element with an atomic weight of 58.933195. Cobalt Bohr ModelThe number of electrons in each of cobalt's shells is 2, 8, 15, 2 and its electron configuration is [Ar]3d7 4s2. The cobalt atom has a radius of 125 pm and a Van der Waals radius of 192 pm. Cobalt was first discovered by George Brandt in 1732. In its elemental form, cobalt has a lustrous gray appearance. Cobalt is found in cobaltite, erythrite, glaucodot and skutterudite ores. Elemental CobaltCobalt produces brilliant blue pigments which have been used since ancient times to color paint and glass. Cobalt is a ferromagnetic metal and is used primarily in the production of magnetic and high-strength superalloys. Co-60, a commercially important radioisotope, is useful as a radioactive tracer and gamma ray source. The origin of the word Cobalt comes from the German word "Kobalt" or "Kobold," which translates as "goblin," "elf" or "evil spirit.

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Related Forms & Applications