Skip to Page Content

Iron Wire

High Purity Fe Wire
CAS 7439-89-6


Product Product Code Request Quote
(2N) 99% Iron Wire FE-M-02-W Request Quote
(3N) 99.9% Iron Wire FE-M-03-W Request Quote
(4N) 99.99% Iron Wire FE-M-04-W Request Quote
(5N) 99.999% Iron Wire FE-M-05-W Request Quote

CHEMICAL
IDENTIFIER
Formula CAS No. PubChem SID PubChem CID MDL No. EC No Beilstein
Re. No.
SMILES
Identifier
InChI
Identifier
InChI
Key
Fe 7439-89-6 24847522 N/A MFCD00010999 231-096-4 N/A [Fe] InChI=1S/Fe XEEYBQQBJWHFJM-UHFFFAOYSA-N

PROPERTIES Mol. Wt. Appearance Density Tensile Strength Melting Point Boiling Point Thermal Conductivity Electrical Resistivity Eletronegativity Specific Heat Heat of Vaporization Heat of Fusion MSDS
55.85 Gray kg/m³ N/A 1535°C 2750°C 0.804 W/cm/K @ 298.2 K 9.71 microhm-cm @ 20°C 1.8 Paulings 0.106 Cal/g/K @ 25°C 84.6 K-Cal/gm atom at 2750°C 3.56 Cal/gm mole Safety Data Sheet

American Elements specializes in producing high purity uniform shaped Iron Wire with the highest possible density High Purity Metal Wire Image for use in semiconductor, Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes including Thermal and Electron Beam (E-Beam) Evaporation, Low Temperature Organic Evaporation, Atomic Layer Deposition (ALD), Metallic-Organic and Chemical Vapor Deposition (MOCVD). Our standard Metal Wire sizes range from 0.75 mm to 1 mm to 2 mm diameter with strict tolerances (See ASTM requirements) and alpha values (conductive resistance) for uses such as gas detection and thermometry tolerances (Also see Nanoparticles) . Please contact us to fabricate custom wire alloys and gauge sizes. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. American Elements also casts any of the rare earth metals and most other advanced materials into rod, bar or plate form, as well as other machined shapes and through other processes such as nanoparticles and in the form of solutions and organometallics. We can also provide Rod outside this range. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. We also produce Iron as powder, ingot, pieces, pellets, disc, granules and in compound forms, such as oxide. Other shapes are available by request.

Iron (Fe) atomic and molecular weight, atomic number and elemental symbolIron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2.Iron Bohr Model The iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Elemental Iron Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite. Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger. For more information on iron, including properties, safety data, research, and American Elements' catalog of iron products, visit the Iron element page.


HEALTH, SAFETY & TRANSPORTATION INFORMATION
N/A
N/A
N/A
N/A
N/A
N/A
N/A
nwg
N/A        

CUSTOMERS FOR IRON HAVE ALSO LOOKED AT
Iron Pellets Iron Oxide Iron Nitrate Iron Oxide Pellets Iron Nanoparticles
Iron Chloride Iron Acetylacetonate Iron Bars Iron Foil Aluminum Iron Alloy
Zirconium Scandium Iron Alloy Iron Fluoride Iron Metal Iron Acetate Iron Sputtering Target
Show Me MORE Forms of Iron

PACKAGING SPECIFICATIONS FOR BULK & RESEARCH QUANTITIES
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Material Safety Data Sheet (MSDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes.


Have a Question? Ask a Chemical Engineer or Material Scientist
Request an MSDS or Certificate of Analysis

Recent Research & Development for Iron

  • Humic acids enhance the microbially mediated release of sedimentary ferrous iron.. Chang CH, Wei CC, Lin LH, Tu TH, Liao VH.. Environ Sci Pollut Res Int. 2015 May 22.
  • An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction.. Cianciotto NP.. Future Microbiol. 2015 May
  • Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS.. Lee JK, Shin JH, Gwag BJ, Choi EJ.. Neurobiol Dis. 2015 May 19.
  • Colorimetric detection of iron ions (III) based on the highly sensitive plasmonic response of the N-acetyl-l-cysteine-stabilized silver nanoparticles.. Gao X, Lu Y, He S, Li X, Chen W.. Anal Chim Acta. 2015 Jun 16
  • Superparamagnetic iron oxide as a tracer for sentinel node biopsy in breast cancer: A comparative non-inferiority study.. Piñero-Madrona A, Torró-Richart JA, de León-Carrillo JM, de Castro-Parga G, Navarro-Cecilia J, Domínguez-Cunchillos F, Román-Santamaría JM, Fuster-Diana C, Pardo-García R; “Grupo de Estudios Senológicos de la Sociedad Española de Patologia Mamaria (SESPM)”.. Eur J Surg Oncol. 2015 May 12.
  • Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia.. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KC.. Int J Nanomedicine. 2015 May 4
  • Characterization of the enhancement of zero valent iron on microbial azo reduction. Fang Y, Xu M, Wu WM, Chen X, Sun G, Guo J, Liu X. BMC Microbiol. 2015 Apr 10: BMC Microbiol
  • Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Contrast Media Mol Imaging. 2015 Apr 16.: Contrast Media Mol Imaging
  • Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions. Ding J, Su M, Wu C, Lin K. Chemosphere. 2015 Apr 13: Chemosphere
  • Application of iron oxide b nanoparticles in neuronal tissue engineering. Ziv-Polat O, Margel S, Shahar A. Neural Regen Res. 2015 Feb: Neural Regen Res