Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.

Title Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.
Authors J. Tung; J.Y. Ching; Y.M. Ng; L.S. Tew; Y.L. Khung
Journal ACS Appl Mater Interfaces
DOI 10.1021/acsami.7b08343

The grafting of cyclopropylamine onto a silicon (100) hydride (Si-H) surface via a ring-opening mechanism using UV photoionization is described here. In brief, radicals generated from the Si-H surface upon UV irradiation were found to behave in classical hydrogen abstraction theory manner by which the distal amine group was first hydrogen abstracted and the radical propagated down to the cyclopropane moiety. This subsequently liberated the strained bonds of the cyclopropane group and initiated the surface grafting process, producing a thin film approximately 10-15 nm in height. Contact angle measurements also showed that such photoionization irradiation had yielded an extremely hydrophilic surface (?21.3°) and X-ray photoelectron spectroscopy also confirmed the coupling was through the Si-C linkage. However, when the surface underwent high-temperature hydrosilylation (>160 °C), the reaction proceeded predominantly through the nucleophilic NH2 group to form a Si-N linkage to the surface. This rendered the surface hydrophobic and hence suggested that the Si-H homolysis model may not be the main process. To the best of our knowledge, this was the first attempt reported in the literature to use photoionization to directly graft cyclopropylamine onto a silicon surface and in due course generate a highly rich NH-terminated surface that was found to be highly bioactive in promoting cell viability on the basis of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide studies.

Citation J. Tung; J.Y. Ching; Y.M. Ng; L.S. Tew; Y.L. Khung.Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.. ACS Appl Mater Interfaces. 2017. doi:10.1021/acsami.7b08343

Related Elements


See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications