How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study.

Title How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study.
Authors Y. Zhao; L. Yang; J. Zhao; Q. Cai; P. Jin
Journal Phys Chem Chem Phys
DOI 10.1039/c7cp02853a
Abstract

The search for effective anchoring nanomaterials for the immobilization of soluble lithium polysulfide (Li2Sn) species to suppress their shuttling effect has been a key scientific issue for the large-scale practical application of lithium-sulfur (Li-S) batteries. In this work, by means of comprehensive density functional theory (DFT) computations, we systematically investigated the potential of a series of doped and defective boron nitride (BN) nanosheets as chemical immobilizers for the soluble Li2Sn species. Our results revealed that the introduction of dopants and defects can enhance the binding strength of Li2Sn species with BN nanosheets due to the strong LiN or SB interaction. In particular, the doped BN nanosheets that can moderately interact with Li2Sn species are shown to exhibit outstanding anchoring effects for Li-S batteries because they can keep a balance between the binding strength and integrity of Li2Sn species. Therefore, by carefully controlling the type of dopants, the inert BN nanosheet can be converted to quite a promising electrode material with high efficiency for Li-S batteries.

Citation Y. Zhao; L. Yang; J. Zhao; Q. Cai; P. Jin.How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study.. Phys Chem Chem Phys. 2017. doi:10.1039/c7cp02853a

Related Elements

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Lithium

Lithium Bohr ModelSee more Lithium products. Lithium (atomic symbol: Li, atomic number: 3) is a Block S, Group 1, Period 2 element with an atomic weight of 6.94. The number of electrons in each of Lithium's shells is [2, 1] and its electron configuration is [He] 2s1. The lithium atom has a radius of 152 pm and a Van der Waals radius of 181 pm. Lithium was discovered by Johann Arvedson in 1817 and first isolated by William Thomas Brande in 1821. The origin of the name Lithium comes from the Greek wordlithose which means "stone." Lithium is a member of the alkali group of metals. It has the highest specific heat and electrochemical potential of any element on the period table and the lowest density of any elements that are solid at room temperature. Elemental LithiumCompared to other metals, it has one of the lowest boiling points. In its elemental form, lithium is soft enough to cut with a knife its silvery white appearance quickly darkens when exposed to air. Because of its high reactivity, elemental lithium does not occur in nature. Lithium is the key component of lithium-ion battery technology, which is becoming increasingly more prevalent in electronics.

Related Forms & Applications