Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina.

Title Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina.
Authors G. Berenstein; S. Nasello; É. Beiguel; P. Flores; J. Di Schiena; S. Basack; E.A. Hughes; A. Zalts; J.M. Montserrat
Journal Sci Total Environ
DOI 10.1016/j.scitotenv.2017.02.129
Abstract

The objective of this study was to measure the impact of the mechanized chlorpyrifos, copper oxychloride and myclobutanil application in a small peach orchard, on humans (operators, bystanders and residents) and on the productive soil. The mean Potential Dermal Exposure (PDE) of the workers (tractor drivers) was 30.8mL·h(-1)±16.4mL·h(-1), with no specific pesticide distribution on the laborers body. Although the Margin of Safety (MOS) factor for the application stage were above 1 (safe condition) for myclobutanil and cooper oxycloride it was below 1 for chlorpyrifos. The mix and load stage remained as the riskier operation. Pesticide found on the orchard soil ranged from 5.5% to 14.8% of the total chlorpyrifos, copper oxychloride and myclobutanil applied. Pesticide drift was experimentally measured, finding values in the range of 2.4% to 11.2% of the total pesticide applied. Using experimental drift values, bystander (for one application), resident (for 20 applications) and earthworm (for one application) risk indicators (RIs) were calculated for the chlorpyrifos plus copper oxychloride and for myclobutanil treatments for different distances to the orchard border. Earthworm RI was correlated with experimental Eisenia andrei ecotoxicological assays (enzymatic activities: cholinesterases, carboxylesterases and glutathione S-transferases; behavioral: avoidance and bait-lamina tests) with good correlation.

Citation G. Berenstein; S. Nasello; É. Beiguel; P. Flores; J. Di Schiena; S. Basack; E.A. Hughes; A. Zalts; J.M. Montserrat.Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina.. Sci Total Environ. 2017;586:12541262. doi:10.1016/j.scitotenv.2017.02.129

Related Elements

Copper

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper..

Chlorine

Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Related Forms & Applications