In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability.

Title In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability.
Authors M. Yang; H.S. Peng; F.L. Zeng; F. Teng; Z. Qu; D. Yang; Y.Q. Wang; G.X. Chen; D.W. Wang
Journal J Colloid Interface Sci
DOI 10.1016/j.jcis.2017.08.094
Abstract

Luminescent perovskite quantum dots (QDs) had attracted great attention by virtue of the merits of color-tunable and narrow-band emissions. However, sofar reported perovskite QDs suffered from instability more or less. In this work, a type of silica-coated orthorhombic CH3NH3PbBr3 QDs (SiO2-QDs) with greatly improved stability was reported. The SiO2-QDs were one-pot synthesized using a reprecipitation-encapsulation method assisted with an amine functional silane, which not conly controlled the crystallization of QDs, but also encapsulated QDs with a silica layer simultaneously. More interestingly, the in situ encapsulation of silica shell induced the presence of orthorhombic perovskite that was thought to be unstable at room temperature. This is the first report of orthorhombic CH3NH3PbBr3 QDs, as far as we are concerned. The orthorhombic SiO2-QDs exhibited narrow-band green luminescence with a quantum yield of 78%, and a high production yield of ?70wt%. Moreover, stability of SiO2-QDs was considerably improved due to silica-coating. White-LEDs were also successfully fabricated with the green SiO2-QDs and a red commercial phosphors using a noncontact configuration. These results demonstrated that the orthorhombic SiO2-QDs held great promise for high-performance display or lighting technology.

Citation M. Yang; H.S. Peng; F.L. Zeng; F. Teng; Z. Qu; D. Yang; Y.Q. Wang; G.X. Chen; D.W. Wang.In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability.. J Colloid Interface Sci. 2018;509:3238. doi:10.1016/j.jcis.2017.08.094

Related Elements

Bromine

See more Bromine products. Bromine (atomic symbol: Br, atomic number: 35) is a Block P, Group 17, Period 4 element. Its electron configuration is [Ar]4s23d104p5. The bromine atom has a radius of 102 pm and its Van der Waals radius is 183 pm. In its elemental form, bromine Bromine Bohr Model has a red-brown appearance. Bromine does not occur by itself in nature; it is found as colorless soluble crystalline mineral halide salts. Bromine was discovered and first isolated by Antoine Jérôme Balard and Leopold Gmelin in 1825-1826.

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications