Linear Formula:

In2GaBi2S6

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(5N) 99.999% In2GaBi2S6 Crystal
INGA-BIS-05-XTAL
Pricing > SDS > Data Sheet >
(6N) 99.9999% In2GaBi2S6 Crystal
INGA-BIS-06-XTAL
Pricing > SDS > Data Sheet >

In2GaBi2S6 Crystal Properties (Theoretical)

Compound Formula In2GaBi2S6
Molecular Weight 909.71576
Appearance Silver to dark gray crystals
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

About In2GaBi2S6 Crystal

American Elements manufactures In2GaBi2S6 Crystals as part of its comprehensive catalog of two dimensional (2D) materials including transition metal dichalcogenides (TMDCs) and trichalcogenides (TMTCs), MXenes, and nanomaterials such as graphene. Materials are produced with ultra high purities (≥99.999%) via crystal growth techniques such as chemical vapor transport (CVT), flux transport, or Czochralski pulling. Novel 2D semiconductors, topological insulators, and superconductors have numerous applications in advanced technologies and American Elements engineers can provide guidance to customers on materials characterization and selection. Powders and other forms may be available by request. Please request a quote above to receive pricing information based on your specifications.

In2GaBi2S6 Crystal Synonyms

Indium gallium bismuth sulfide

Chemical Identifiers

Linear Formula In2GaBi2S6
MDL Number N/A
EC No. N/A
Pubchem CID N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Indium

See more Indium products. Indium (atomic symbol: In, atomic number: 49) is a Block P, Group 13, Period 5 element with an atomic weight of 114.818. The number of electrons in each of indium's shells is [2, 8, 18, 18, 3] and its electron configuration is [Kr] 4d10 5s2 5p1. The indium atom has a radius of 162.6 pm and a Van der Waals radius of 193 pm. Indium was discovered by Ferdinand Reich and Hieronymous Theodor Richter in 1863. Indium Bohr ModelIt is a relatively rare, extremely soft metal is a lustrous silvery gray and is both malleable and easily fusible. It has similar chemical properties to Elemental Indiumgallium such as a low melting point and the ability to wet glass. Fields such as optics and microelectronics that utilize semiconductor technology have wide uses for indium, especially in the form of Indiun Tin Oxide (ITO). Thin films of Copper Indium Gallium Selenide (CIGS) are used in high-performing solar cells. Indium's name is derived from the Latin word indicum, meaning violet.

Gallium

See more Gallium products. Gallium (atomic symbol: Ga, atomic number: 31) is a Block P, Group 13, Period 4 element with an atomic weight of 69.723.The number of electrons in each of Gallium's shells is 2, 8, 18, 3 and its electron configuration is [Ar] 3d10 4s2 4p1. The gallium atom has a radius of 122.1 pm and a Van der Waals radius of 187 pm. Gallium Bohr ModelGallium was predicted by Dmitri Mendeleev in 1871. It was first discovered and isolated by Lecoq de Boisbaudran in 1875. In its elemental form, gallium has a silvery appearance. Elemental GalliumGallium is one of three elements that occur naturally as a liquid at room temperature, the other two being mercury and cesium. Gallium does not exist as a free element in nature and is sourced commercially from bauxite and sphalerite. Currently, gallium is used in semiconductor devices for microelectronics and optics. The element name originates from the Latin word 'Gallia', the old name of France, and the word 'Gallus,' meaning rooster.

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

TODAY'S SCIENCE POST!

October 22, 2020
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
Classified knots': Researchers create optical framed knots to encode information

Classified knots': Researchers create optical framed knots to encode information