Interface mechanisms of catalytic ozonation with amorphous iron silicate for removal of 4-chloronitrobenzene in aqueous solution.

Title Interface mechanisms of catalytic ozonation with amorphous iron silicate for removal of 4-chloronitrobenzene in aqueous solution.
Authors L. Yuan; J. Shen; P. Yan; Z. Chen
Journal Environ Sci Technol
DOI 10.1021/acs.est.7b04875
Abstract

Iron silicate was synthesized and characterized as an efficient ozonation catalyst. Results indicated that iron silicate is a microporous material with poor crystallinity. Fe-O-Si and Fe-O bonds were observed on its surface. The Fe-O bonds belonged to ?-Fe2O3. Heterogeneous catalytic ozonation test was performed in batch reaction mode, and 4-chloronitrobenzene was used as model organic compounds. Amorphous iron silicate exhibited high catalytic activity, ozone utilization efficiency, and stability in catalytic ozonation. Hydroxyl radical was the dominant oxide species in this process. The reaction mechanism at the solid-water interface indicates that Fe-Si binary oxides on iron silicate surface inhibited ozone futile decomposition. This behavior resulted in enhanced probability of the reaction between ozone and ?-Fe2O3 on the iron silicate surface to generate hydroxyl radicals which promoted 4-chloronitrobenzene removal in aqueous solution.

Citation L. Yuan; J. Shen; P. Yan; Z. Chen.Interface mechanisms of catalytic ozonation with amorphous iron silicate for removal of 4-chloronitrobenzene in aqueous solution.. Environ Sci Technol. 2018. doi:10.1021/acs.est.7b04875

Related Elements

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Related Forms & Applications