Iron Nickel Copper Nanoparticles


Request Quote

(2N) 99% Iron Nickel Copper Nanoparticles FE-NICU-02-NP Pricing
(3N) 99.9% Iron Nickel Copper Nanoparticles FE-NICU-03-NP Pricing
(4N) 99.99% Iron Nickel Copper Nanoparticles FE-NICU-04-NP Pricing
(5N) 99.999% Iron Nickel Copper Nanoparticles FE-NICU-05-NP Pricing


Appearance Powder
Melting Point N/A
Boiling Point N/A
Density N/A

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A


High Purity, D50 = +10 nanometer (nm) by SEMIron Nickel Copper (FeNiCu) Nanoparticles, nanodots or nanopowder are spherical or faceted high surface area metal particles. Nanoscale Tin Particles are typically 10-20 nanometers (nm) with specific surface area (SSA) in the 30 - 60 m 2 /g range and also available in with an average particle size of 80 nm range with a specific surface area of approximately 12 m 2 /g. Nano Tin Particles are also available in Ultra high purity and high purity and coated and dispersed forms. They are also available as a nanofluid through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.



Chemical Identifiers

Formula Fe-Ni-Cu
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Products & Element Information

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper.

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Recent Research

Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines., De la Torre, Joseph Benjamin B., Claveria Rene Juna R., Perez Rubee Ellaine C., Perez Teresita R., and Doronila Augustine I. , Int J Phytoremediation, 2016 May 3, Volume 18, Issue 5, p.435-41, (2016)

Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria., Sun, Leni, Wang Xiaohan, and Li Ya , Int J Phytoremediation, 2016 May 3, Volume 18, Issue 5, p.494-501, (2016)

In situ microliter-droplet anodic stripping voltammetry of copper stained on the gold label after galvanic replacement reaction enlargement for ultrasensitive immunoassay of proteins., Qin, Xiaoli, Xu Aigui, Wang Linchun, Liu Ling, Chao Long, He Fang, Tan Yueming, Chen Chao, and Xie Qingji , Biosens Bioelectron, 2016 May 15, Volume 79, p.914-21, (2016)

Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound., Gupta, Harsh, and Gogate Parag R. , Ultrason Sonochem, 2016 May, Volume 30, p.113-22, (2016)

Metabolic capacities of common carp (Cyprinus carpio) following combined exposures to copper and environmental hypoxia., Malekpouri, Pedram, Peyghan Rahim, Mahboobi-Soofiani Nasrollah, and Mohammadian Babak , Ecotoxicol Environ Saf, 2016 May, Volume 127, p.1-11, (2016)

Utilization of reduced graphene oxide/cadmium sulfide-modified carbon cloth for visible-light-prompt photoelectrochemical sensor for copper (II) ions., Foo, C Y., Lim H N., Pandikumar A, Huang N M., and Ng Y H. , J Hazard Mater, 2016 Mar 5, Volume 304, p.400-8, (2016)

Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite., Zhybak, M, Beni V, Vagin M Y., Dempsey E, Turner A P. F., and Korpan Y , Biosens Bioelectron, 2016 Mar 15, Volume 77, p.505-11, (2016)

Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: A new nonenzymatic electrochemical sensor for glucose., Wang, Yan, Zhang Sai, Bai Wushuang, and Zheng Jianbin , Talanta, 2016 Mar 1, Volume 149, p.211-6, (2016)

Molecular imprinting method for fabricating novel glucose sensor: Polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles., Farid, Mohammad Masoudi, Goudini Leila, Piri Farideh, Zamani Abbasali, and Saadati Fariba , Food Chem, 2016 Mar 1, Volume 194, p.61-7, (2016)

Nanosized spongelike Mn3O4 as an adsorbent for preconcentration by vortex assisted solid phase extraction of copper and lead in various food and herb samples., Yavuz, Emre, Tokalıoğlu Şerife, Şahan Halil, and Patat Şaban , Food Chem, 2016 Mar 1, Volume 194, p.463-9, (2016)