Iron Nickel Copper Nanoparticles

Linear Formula: Fe-Ni-Cu

Request Quote

PRODUCT Product Code REQUEST A QUOTE SAFETY DATA TECHNICAL DATA
(2N) 99% Iron Nickel Copper Nanoparticles
FE-NICU-02-NP Pricing
(3N) 99.9% Iron Nickel Copper Nanoparticles
FE-NICU-03-NP Pricing
(4N) 99.99% Iron Nickel Copper Nanoparticles
FE-NICU-04-NP Pricing
(5N) 99.999% Iron Nickel Copper Nanoparticles
FE-NICU-05-NP Pricing

Properties

Appearance Powder
Melting Point N/A
Boiling Point N/A
Density N/A

Health & Safety Info  |  MSDS / SDS

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Transport Information N/A
MSDS / SDS

About

High Purity, D50 = +10 nanometer (nm) by SEMIron Nickel Copper (FeNiCu) Nanoparticles, nanodots or nanopowder are spherical or faceted high surface area metal particles. Nanoscale Tin Particles are typically 10-20 nanometers (nm) with specific surface area (SSA) in the 30 - 60 m2/g range and also available in with an average particle size of 80 nm range with a specific surface area of approximately 12 m2/g. Nano Tin Particles are also available in Ultra high purity and high purity and coated and dispersed forms. They are also available as a dispersion through the AE Nanofluid production group. Nanofluids are generally defined as suspended nanoparticles in solution either using surfactant or surface charge technology. Nanofluid dispersion and coating selection technical guidance is also available. Other nanostructures include nanorods, nanowhiskers, nanohorns, nanopyramids and other nanocomposites. Surface functionalized nanoparticles allow for the particles to be preferentially adsorbed at the surface interface using chemically bound polymers.

Synonyms

N/A

Chemical Identifiers

Linear Formula Fe-Ni-Cu
CAS N/A
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Products & Element Information

SUCCESS

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar] 3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a red-orange metallic luster appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity.The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus." Cyprus, a Mediterranean island, was known as an ancient source of mined copper.

SUCCESS

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

SUCCESS

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

Recent Research

The effects of pH and copper on the formation of volatile sulfur compounds in Chardonnay and Shiraz wines post-bottling., Bekker, Marlize Z., Mierczynska-Vasilev Agnieszka, Smith Paul A., and Wilkes Eric N. , Food Chem, 2016 Sep 15, Volume 207, p.148-56, (2016)

A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate., Ding, Lijun, Gao Yan, and Di Junwei , Biosens Bioelectron, 2016 Sep 15, Volume 83, p.9-14, (2016)

Cyclic voltammetry deposition of copper nanostructure on MWCNTs modified pencil graphite electrode: An ultra-sensitive hydrazine sensor., Heydari, Hamid, Gholivand Mohammad B., and Abdolmaleki Abbas , Mater Sci Eng C Mater Biol Appl, 2016 Sep 1, Volume 66, p.16-24, (2016)

Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties., Sadanand, V, Rajini N, A Rajulu Varada, and Satyanarayana B , Carbohydr Polym, 2016 Oct 5, Volume 150, p.32-9, (2016)

Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst., Wang, Dahui, Ju Xiaomin, Zhang Gaochuan, Wang Donghua, and Wei Gongyuan , Carbohydr Polym, 2016 Oct 5, Volume 150, p.209-15, (2016)

Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations., Li, Min-Jing, Xiong Zhi-Ting, Liu Hui, Kuo Yi-Ming, and Tong Lei , Int J Phytoremediation, 2016 Oct 2, Volume 18, Issue 10, p.966-76, (2016)

Effect of copper-doped silicate 13-93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo., Lin, Yinan, Xiao Wei, B Bal Sonny, and Rahaman Mohamed N. , Mater Sci Eng C Mater Biol Appl, 2016 Oct 1, Volume 67, p.440-52, (2016)

An ultra-facile and label-free immunoassay strategy for detection of copper (II) utilizing chemiluminescence self-enhancement of Cu (II)-ethylenediaminetetraacetate chelate., Ouyang, Hui, Shu Qi, Wang Wenwen, Wang Zhenxing, Yang Shijia, Wang Lin, and Fu Zhifeng , Biosens Bioelectron, 2016 Nov 15, Volume 85, p.157-63, (2016)

Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria., Sun, Leni, Wang Xiaohan, and Li Ya , Int J Phytoremediation, 2016 May 3, Volume 18, Issue 5, p.494-501, (2016)

Copper uptake by Pteris melanocaulon Fée from a Copper-Gold mine in Surigao del Norte, Philippines., De la Torre, Joseph Benjamin B., Claveria Rene Juna R., Perez Rubee Ellaine C., Perez Teresita R., and Doronila Augustine I. , Int J Phytoremediation, 2016 May 3, Volume 18, Issue 5, p.435-41, (2016)

Question? Ask an American Elements Engineer

TODAY'S SCIENCE POST!

September 25, 2016
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

Materials scientists prove 70-year-old tensile deformation prediction