Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron.

Title Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron.
Authors B. Hu; G. Chen; C. Jin; J. Hu; C. Huang; J. Sheng; G. Sheng; J. Ma; Y. Huang
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.04.069
Abstract

Herein, a promising titanate nanotubes (TNT) anchored nanoscale zero-valent iron (NZVI) nanocomposite (NZVI/TNT) was synthesized, characterized and used for the enhanced scavenging of Cr(VI) and Se(VI) from water. The structural identification indicated that NZVI was uniformly loaded on TNT, thereby, the oxidation and aggregation of NZVI was significantly minimized. The macroscopic experimental results indicated that NZVI/TNT exhibited higher efficiency as well as rate on Cr(VI) and Se(VI) scavenging resulted from the good synergistic effect between adsorption and reduction. Besides, TNT can weaken the inhibitory effect of co-existing humic acid (HA) and fulvic acid (FA) on the scavenging of Cr(VI) and Se(VI) by NZVI, since TNT showed strong adsorption for HA and FA that inhibit potential reactivity. XPS analysis suggested that surface-bound Fe(II) played a critical role in Cr(VI) and Se(VI) scavenging. XANES analysis demonstrated that TNT acted as a promoter for the almost complete transformation of Cr(VI) into Cr(III), and Se(VI) into Se(0)/Se(-II) in NZVI system. EXAFS analysis indicated that TNT acted as a scavenger for insoluble products, and thus more reactive sites can be used for Cr(VI) and Se(VI) reduction. The excellent performance of NZVI/TNT provide a potential material for purification and detoxification of Cr(VI) and Se(VI) from wastewater.

Citation B. Hu; G. Chen; C. Jin; J. Hu; C. Huang; J. Sheng; G. Sheng; J. Ma; Y. Huang.Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron.. J Hazard Mater. 2017;336:214221. doi:10.1016/j.jhazmat.2017.04.069

Related Elements

Iron

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications