20th anniversary seal20th anniversary seal20th anniversary seal

Manganese Zinc Iron Oxide Nanoparticle Dispersion

Manganese Zinc Iron Oxide Nanodispersion

Linear Formula:

MnxZn1-xFe2O4

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Manganese Zinc Iron Oxide Nanoparticle Dispersion
MNZN-FEIT-01-NPD
Pricing > SDS > Data Sheet >
Question? Ask an American Elements EngineerWHOLESALE/SKU 0000-742-241987

Manganese Zinc Iron Oxide Nanoparticle Dispersion Properties

Appearance

Liquid

Melting Point

Varies by solvent

Boiling Point

Varies by solvent

Density

Varies by solvent

Manganese Zinc Iron Oxide Nanoparticle Dispersion Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A
MSDS / SDS

About Manganese Zinc Iron Oxide Nanoparticle Dispersion

Manganese Zinc Iron Oxide Nanoparticle Dispersions are suspensions of manganese zinc iron oxide nanoparticles in water or various organic solvents such as ethanol or mineral oil. American Elements manufactures oxide nanopowders and nanoparticles with typical particle sizes ranging from 10 to 200nm and in coated and surface functionalized forms. Our nanodispersion and nanofluid experts can provide technical guidance for selecting the most appropriate particle size, solvent, and coating material for a given application. We can also produce custom nanomaterials tailored to the specific requirements of our customers upon request.

Manganese Zinc Iron Oxide Nanoparticle Dispersion Synonyms

Iron manganese ferrite, manganese iron zinc oxide, Manganese Zinc Iron nanopowder suspension, aqueous Manganese Zinc Iron nanoparticle solution, Manganese Zinc Iron nanofluid

Manganese Zinc Iron Oxide Nanoparticle Dispersion Chemical Identifiers

Linear Formula

MnxZn1-xFe2O4

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Iron products. Iron (atomic symbol: Fe, atomic number: 26) is a Block D, Group 8, Period 4 element with an atomic weight of 55.845. The number of electrons in each of Iron's shells is 2, 8, 14, 2 and its electron configuration is [Ar] 3d6 4s2. Iron Bohr ModelThe iron atom has a radius of 126 pm and a Van der Waals radius of 194 pm. Iron was discovered by humans before 5000 BC. In its elemental form, iron has a lustrous grayish metallic appearance. Iron is the fourth most common element in the Earth's crust and the most common element by mass forming the earth as a whole. Iron is rarely found as a free element, since it tends to oxidize easily; it is usually found in minerals such as magnetite, hematite, goethite, limonite, or siderite.Elemental Iron Though pure iron is typically soft, the addition of carbon creates the alloy known as steel, which is significantly stronger.

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

See more Zinc products. Zinc (atomic symbol: Zn, atomic number: 30) is a Block D, Group 12, Period 4 element with an atomic weight of 65.38. The number of electrons in each of zinc's shells is 2, 8, 18, 2, and its electron configuration is [Ar] 3d10 4s2. Zinc Bohr ModelThe zinc atom has a radius of 134 pm and a Van der Waals radius of 210 pm. Zinc was discovered by Indian metallurgists prior to 1000 BC and first recognized as a unique element by Rasaratna Samuccaya in 800. Zinc was first isolated by Andreas Marggraf in 1746. In its elemental form, zinc has a silver-gray appearance. It is brittle at ordinary temperatures but malleable at 100 °C to 150 °C.Elemental Zinc It is a fair conductor of electricity, and burns in air at high red producing white clouds of the oxide. Zinc is mined from sulfidic ore deposits. It is the 24th most abundant element in the earth's crust and the fourth most common metal in use (after iron, aluminum, and copper). The name zinc originates from the German word "zin," meaning tin.

Recent Research

Removal of thallium from aqueous solutions using Fe-Mn binary oxides., Li, Huosheng, Chen Yongheng, Long Jianyou, Li Xiuwan, Jiang Daqian, Zhang Ping, Qi Jianying, Huang Xuexia, Liu Juan, Xu Ruibing, et al. , J Hazard Mater, 2017 May 25, Volume 338, p.296-305, (2017)

Spinel-type manganese ferrite (MnFe2O4) microspheres: A novel affinity probe for selective and fast enrichment of phosphopeptides., Long, Xing-Yu, Li Jia-Yuan, Sheng Dong, and Lian Hong-zhen , Talanta, 2017 May 01, Volume 166, p.36-45, (2017)

Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency., Bjørklund, Geir, Aaseth Jan, Skalny Anatoly V., Suliburska Joanna, Skalnaya Margarita G., Nikonorov Alexandr A., and Tinkov Alexey A. , J Trace Elem Med Biol, 2017 May, Volume 41, p.41-53, (2017)

3D hierarchical flower-like nickel ferrite/manganese dioxide toward lead (II) removal from aqueous water., Xiang, Bo, Ling Dong, Lou Han, and Gu Hongbo , J Hazard Mater, 2017 Mar 05, Volume 325, p.178-188, (2017)

Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal., Wen, Zhipan, Zhang Yalei, Guo Sheng, and Chen Rong , J Colloid Interface Sci, 2017 Jan 15, Volume 486, p.211-218, (2017)

Evaluation of folic acid tagged aminated starch/ZnO coated iron oxide nanoparticles as targeted curcumin delivery system., Saikia, Chinmayee, Das Monoj K., Ramteke Anand, and Maji Tarun K. , Carbohydr Polym, 2017 Feb 10, Volume 157, p.391-399, (2017)

Synthesis of iron(II,III) oxide/zinc oxide/copper(II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal., Taufik, Ardiansyah, and Saleh Rosari , J Colloid Interface Sci, 2017 Apr 01, Volume 491, p.27-36, (2017)

Chelating-Template-Assisted in Situ Encapsulation of Zinc Ferrite Inside Silica Mesopores for Enhanced Gas-Sensing Characteristics., Niu, Kui, Liang Liman, Peng Fei, Zhang Fan, Gu Yao, and Tian Hongyan , ACS Appl Mater Interfaces, 2016 Sep 8, (2016)

A novel one-step strategy toward ZnMn2O4/N-doped graphene nanosheets with robust chemical interaction for superior lithium storage., Wang, Dong, Zhou Weiwei, Zhang Yong, Wang Yali, Wu Gangan, Yu Kun, and Wen Guangwu , Nanotechnology, 2016 Jan 29, Volume 27, Issue 4, p.045405, (2016)

TODAY'S SCIENCE POST!

June 23, 2017
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

Magnetic space tug could target dead satellites