Molybdenum Aluminum Boride

MoAlB MAX Phase Powder

Linear Formula:

MoAlB

MDL Number:

N/A

EC No.:

N/A

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% Molybdenum Aluminum Boride
MO-ALB-02-P
Pricing > SDS > Data Sheet >
(3N) 99.9% Molybdenum Aluminum Boride
MO-ALB-03-P
Pricing > SDS > Data Sheet >
(4N) 99.99% Molybdenum Aluminum Boride
MO-ALB-04-P
Pricing > SDS > Data Sheet >
(5N) 99.999% Molybdenum Aluminum Boride
MO-ALB-05-P
Pricing > SDS > Data Sheet >

Molybdenum Aluminum Boride Properties (Theoretical)

Compound Formula MoAlB
Molecular Weight 133.73
Appearance Dark gray to black powder
Melting Point N/A
Boiling Point N/A
Density 6.33 g/cm3
Solubility in H2O N/A

About Molybdenum Aluminum Boride

Molybdenum Aluminum Boride is a ternary layered MAX phase compound of the general type Mn+1AXn, where M is a transition metal, A is an element such as aluminum or silicon, and X is either carbon or nitrogen, with n=1, 2, or 3. MAX phase compunds are precursors for the production of MXenes, novel 2D materials notable for their properties that combine aspects of both metals and ceramics. MXene from the bulk three dimensional MAX phase compound involves exfoliation or etching to selectively remove the A layer, resulting in layers which can be separated by other ions (known as intercalation) which enhances their properties. American Elements manufactures a comprehensive catalog of ultra high purity (>e;99.999%) MAX phase and MXene materials. Please request a quote above to receive pricing information based on your specifications.

Molybdenum Aluminum Boride Synonyms

MoAlB MAXene Phase, molybdenum-aluminum-boron composite

Chemical Identifiers

Linear Formula MoAlB
MDL Number N/A
EC No. N/A
Pubchem CID N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Molybdenum

See more Molybdenum products. Molybdenum (atomic symbol: Mo, atomic number: 42) is a Block D, Group 6, Period 5 element with an atomic weight of 95.96. Molybdenum Bohr ModelThe number of electrons in each of molybdenum's shells is [2, 8, 18, 13, 1] and its electron configuration is [Kr] 4d5 5s1. The molybdenum atom has a radius of 139 pm and a Van der Waals radius of 209 pm. In its elemental form, molybdenum has a gray metallic appearance. Molybdenum was discovered by Carl Wilhelm in 1778 and first isolated by Peter Jacob Hjelm in 1781. Molybdenum is the 54th most abundant element in the earth's crust. Elemental MolybdenumIt has the third highest melting point of any element, exceeded only by tungsten and tantalum. Molybdenum does not occur naturally as a free metal, it is found in various oxidation states in minerals. The primary commercial source of molybdenum is molybdenite, although it is also recovered as a byproduct of copper and tungsten mining. The origin of the name Molybdenum comes from the Greek word molubdos meaning lead.

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.

TODAY'S TOP DISCOVERY!

March 28, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
University of Michigan researchers develop new fabrication process for helical metal nanoparticles

University of Michigan researchers develop new fabrication process for helical metal nanoparticles