Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO2 Microfibers.

Title Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO2 Microfibers.
Authors N. Wang; Y. Gao; Y.X. Wang; K. Liu; W. Lai; Y. Hu; Y. Zhao; S.L. Chou; L. Jiang
Journal Adv Sci (Weinh)
DOI 10.1002/advs.201600013
Abstract

Nanoengineering of electrode materials can directly facilitate sodium ion accessibility and transport, thus enhancing electrochemical performance in sodium ion batteries. Here, highly sodium-accessible carbon coated nanoporous TiO2 microfibers have been synthesised via the facile electrospinning technique which can deliver an enhanced capacity of ?167 mAh g(-1) after 450 cycles at current density of 50 mA g(-1) and retain a capacity of ?71 mAh g(-1) at the high current rate of 1 A g(-1). With the benefits of their porous structure, thin TiO2 inner walls, and the introduction of conductive carbon, the nanoporous TiO2/C microfibers exhibit high ion accessibility, fast Na ion transport, and fast electron transport, thereby leading to the excellent Na-storage properties presented here. Nanostructuring is proven to be a fruitful strategy that can alleviate the reliance on materials' intrinsic nature; and the electrospinning technique is versatile and cost-effective for the fabrication of such an effective nanoporous microfiber structure.

Citation N. Wang; Y. Gao; Y.X. Wang; K. Liu; W. Lai; Y. Hu; Y. Zhao; S.L. Chou; L. Jiang.Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO2 Microfibers.. Adv Sci (Weinh). 2016;3(8):1600013. doi:10.1002/advs.201600013

Related Elements

Carbon

See more Carbon products. Carbon (atomic symbol: C, atomic number: 6) is a Block P, Group 14, Period 2 element. Carbon Bohr ModelThe number of electrons in each of Carbon's shells is 2, 4 and its electron configuration is [He]2s2 2p2. In its elemental form, carbon can take various physical forms (known as allotropes) based on the type of bonds between carbon atoms; the most well known allotropes are diamond, graphite, amorphous carbon, glassy carbon, and nanostructured forms such as carbon nanotubes, fullerenes, and nanofibers . Carbon is at the same time one of the softest (as graphite) and hardest (as diamond) materials found in nature. It is the 15th most abundant element in the Earth's crust, and the fourth most abundant element (by mass) in the universe after hydrogen, helium, and oxygen. Carbon was discovered by the Egyptians and Sumerians circa 3750 BC. It was first recognized as an element by Antoine Lavoisier in 1789.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Titanium

See more Titanium products. Titanium (atomic symbol: Ti, atomic number: 22) is a Block D, Group 4, Period 4 element with an atomic weight of 47.867. The number of electrons in each of Titanium's shells is [2, 8, 10, 2] and its electron configuration is [Ar] 3d2 4s2. Titanium Bohr ModelThe titanium atom has a radius of 147 pm and a Van der Waals radius of 187 pm. Titanium was discovered by William Gregor in 1791 and first isolated by Jöns Jakob Berzelius in 1825. In its elemental form, titanium has a silvery grey-white metallic appearance. Titanium's properties are chemically and physically similar to zirconium, both of which have the same number of valence electrons and are in the same group in the periodic table. Elemental TitaniumTitanium has five naturally occurring isotopes: 46Ti through 50Ti, with 48Ti being the most abundant (73.8%). Titanium is found in igneous rocks and the sediments derived from them. It is named after the word Titanos, which is Greek for Titans.

Related Forms & Applications