Neutral and Cationic Zirconium Complexes Bearing Multidentate Aminophenolato Ligands for Hydrophosphination Reactions of Alkenes and Heterocumulenes.

Title Neutral and Cationic Zirconium Complexes Bearing Multidentate Aminophenolato Ligands for Hydrophosphination Reactions of Alkenes and Heterocumulenes.
Authors Y. Zhang; L. Qu; Y. Wang; D. Yuan; Y. Yao; Q. Shen
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b02248
Abstract

Zirconium complexes supported by multidentate aminophenolato ligands were synthesized and characterized. The catalytic activities of neutral zirconium complexes and their cationic derivatives in the hydrophosphination of alkenes as well as heterocumulenes have been investigated and compared. Neutral complex 1 bearing a multidentate amino mono(phenolato) ligand exhibited high activity in hydrophosphination of simple alkenes, and anti-Markovnikov products were obtained in 37-94% yields at room temperature. Cationic species generated in situ from complex 3 stabilized by a bis(phenolato) ligand were found to be more active for hydrophosphination of heterocumulenes, i.e., carbodiimides and isocyanates, and gave phosphaguanidines and phosphaureas in 67-93% yields. The Lewis acidity and coordination space of metal centers are modified through changes in the ligand structure, which is found to significantly influence catalytic activity. These complexes are among the most active group 4 metal-based catalysts for hydrophosphination reactions.

Citation Y. Zhang; L. Qu; Y. Wang; D. Yuan; Y. Yao; Q. Shen.Neutral and Cationic Zirconium Complexes Bearing Multidentate Aminophenolato Ligands for Hydrophosphination Reactions of Alkenes and Heterocumulenes.. Inorg Chem. 2018;57(1):139149. doi:10.1021/acs.inorgchem.7b02248

Related Elements

Zirconium

See more Zirconium products. Zirconium (atomic symbol: Zr, atomic number: 40) is a Block D, Group 4, Period 5 element with an atomic weight of 91.224. Zirconium Bohr ModelThe number of electrons in each of Zirconium's shells is 2, 8, 18, 10, 2 and its electron configuration is [Kr]4d2 5s2. The zirconium atom has a radius of 160 pm and a Van der Waals radius of 186 pm. Zirconium was discovered by Martin Heinrich Klaproth in 1789 and first isolated by Jöns Jakob Berzelius in 1824. In its elemental form, zirconium has a silvery white appearance that is similar to titanium. Zirconium's principal mineral is zircon (zirconium silicate). Elemental ZirconiumZirconium is commercially produced as a byproduct of titanium and tin mining and has many applications as a opacifier and a refractory material. It is not found in nature as a free element. The name of zirconium comes from the mineral zircon, the most important source of zirconium, and from the Persian wordzargun, meaning gold-like.

Related Forms & Applications