20th anniversary seal20th anniversary seal20th anniversary seal

Nickel Oxide - Gadolinia doped Ceria

Linear Formula:

NiO-Gd2O3CeO2

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(2N) 99% NiO-GDC
NIOX-GDC-02
Pricing > SDS > Data Sheet >
(3N) 99.9% NiO-GDC
NIOX-GDC-03
Pricing > SDS > Data Sheet >
(4N) 99.99% NiO-GDC
NIOX-GDC-04
Pricing > SDS > Data Sheet >
(5N) 99.999% NiO-GDC
NIOX-GDC-05
Pricing > SDS > Data Sheet >
CUSTOMER ADVISORY: American Elements does not supply gadolinium for use in ANY form of GBCA (“Gadolinium-Based Contrast Agents”) or for ANY medical, pharmaceutical or nutritional use whatsoever or for the manufacture, testing, or development of ANY such products.

Nickel Oxide - Gadolinia doped Ceria Properties (Theoretical)

Appearance Solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Nickel Oxide - Gadolinia doped Ceria Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Transport Information N/A
MSDS / SDS

About Nickel Oxide - Gadolinia doped Ceria

Nickel Oxide-Gadolinia doped Ceria Cermet is a material used in thin films for solid oxide fuel cell. Nickel Oxide-Gadolinium Oxide doped Ceria belongs to a class of doped Ceria compounds with ionic conductivity exceeding Yttria Stabilized Zirconia (YSZ) electrolytes. These include Samarium doped Ceria (SDC) and Yttria doped Ceria (YDC). Even higher conductivity can be achieved with American Elements Scandia doped Zirconia (SCZ) and Yttria doped Bismuth Oxide. Gadolinium Oxide doped Cerium Oxide is available in a powder for tape casting, air spray, extrusion and sputtering fuel cell applications and as an ink for screen printing. Gadolinia doping levels are available at 10% and 20% and as specified by customer. American Elements provides guidance on firing parameters, doping levels, and thermal expansion matching with American Elements' cathode and anode cell layers.

Nickel Oxide - Gadolinia doped Ceria Synonyms

N/A

Chemical Identifiers

Linear Formula NiO-Gd2O3CeO2
MDL Number N/A
EC No. N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Nickel products. Nickel (atomic symbol: Ni, atomic number: 28) is a Block D, Group 4, Period 4 element with an atomic weight of 58.6934. Nickel Bohr ModelThe number of electrons in each of nickel's shells is [2, 8, 16, 2] and its electron configuration is [Ar]3d8 4s2. Nickel was first discovered by Alex Constedt in 1751. The nickel atom has a radius of 124 pm and a Van der Waals radius of 184 pm. In its elemental form, nickel has a lustrous metallic silver appearance. Nickel is a hard and ductile transition metal that is considered corrosion-resistant because of its slow rate of oxidation. Elemental NickelIt is one of four elements that are ferromagnetic and is used in the production of various type of magnets for commercial use. Nickel is sometimes found free in nature but is more commonly found in ores. The bulk of mined nickel comes from laterite and magmatic sulfide ores. The name originates from the German word kupfernickel, which means "false copper" from the illusory copper color of the ore.

See more Cerium products. Cerium (atomic symbol: Ce, atomic number: 58) is a Block F, Group 3, Period 6 element with an atomic weight of 140.116. The number of electrons in each of cerium's shells is 2, 8, 18, 19, 9, 2 and its electron configuration is [Xe]4f2 6s2. Cerium Bohr ModelThe cerium atom has a radius of 182.5 pm and a Van der Waals radius of 235 pm. In its elemental form, cerium has a silvery white appearance. Cerium is the most abundant of the rare earth metals. It is characterized chemically by having two valence states, the +3 cerous and +4 ceric states. The ceric state is the only non-trivalent rare earth ion stable in aqueous solutions. Elemental CeriumIt is, therefore, strongly acidic and moderately toxic. It is also a strong oxidizer. The cerous state closely resembles the other trivalent rare earths. Cerium is found in the minerals allanite, bastnasite, hydroxylbastnasite, monazite, rhabdophane, synchysite and zircon. Cerium was discovered by Martin Heinrich Klaproth, Jöns Jakob Berzelius, and Wilh elm Hisinger in 1803 and first isolated by Carl Gustaf Mosander in 1839. The element was named after the asteroid Ceres.

See more Gadolinium products. Gadolinium (atomic symbol: Gd, atomic number: 64) is a Block F, Group 3, Period 6 element with an atomic radius of 157.25. Gadolinium Bohr ModelThe number of electrons in each of Gadolinium's shells is [2, 8, 18, 25, 9, 2] and its electron configuration is [Xe] 4f7 5d1 6s2. The gadolinium atom has a radius of 180 pm and a Van der Waals radius of 237 pm. Gadolinium was discovered by Jean Charles Galissard de Marignac in 1880 and first isolated by Lecoq de Boisbaudran in 1886. In its elemental form, gadolinium has a silvery-white appearance. Gadolinium is a rare earth or lanthanide element that possesses unique properties advantageous to specialized applications such as semiconductor fabrication and nuclear reactor shielding. Elemental Gadolinium PictureIt is utilized for both its high magnetic moment (7.94μ B) and in phosphors and scintillator crystals. When complexed with EDTA ligands, it is used as an injectable contrast agent for MRIs. The element is named after the Finnish chemist and geologist Johan Gadolin.

TODAY'S SCIENCE POST!

May 19, 2019
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day

Doctor Cures Deafness With 1st Ever Middle Ear Transplant Using 3D Technology