Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein.

Title Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein.
Authors Y.R. Wang; P. Lee; B.T. Zhang; Y.H. Sang; J.L. He; H. Liu; C.K. Lee
Journal Nanoscale
DOI 10.1039/c7nr06004a
Abstract

Saturable absorbers (SAs) have interesting applications for the realization of pulsed lasers in various wavelengths of fiber and solid-state lasers. Topological insulators (TIs) have been recently discovered to feature saturable absorption due to their unique band structure. In this study, high-purity layers of Bi2Te3 thin film SA have been successfully prepared using the spin coating-coreduction approach (SCCA). Compared with the typical method of preparing SAs, the SCCA can be used to prepare topological insulator saturable absorbers (TISAs) with high optical quality, large area consistency, and controllable thickness, which is critical for pulsed lasers. To the best of our knowledge, this study is the first observation and discussion of clear thickness-dependent optical nonlinearity. In this study, a Q-switched bulk Nd:YAG laser is demonstrated and investigated using the prepared TISA as the absorber. The timing jitter and amplitude fluctuation of the stable pulse laser indicated that the SCCA is suitable for fabricating a Bi2Te3 SA. Furthermore, the SCCA enables the establishment of a pulsing laser through saturation intensity engineering.

Citation Y.R. Wang; P. Lee; B.T. Zhang; Y.H. Sang; J.L. He; H. Liu; C.K. Lee.Optical nonlinearity engineering of a bismuth telluride saturable absorber and application of a pulsed solid state laser therein.. Nanoscale. 2017;9(48):1910019107. doi:10.1039/c7nr06004a

Related Elements

Tellurium

See more Tellurium products. Tellurium (atomic symbol: Te, atomic number: 52) is a Block P, Group 16, Period 5 element with an atomic radius of 127.60. Tellurium Bohr ModelThe number of electrons in each of tellurium's shells is 2, 8, 18, 18, 6 and its electron configuration is [Kr] 4d10 5s2 5p4. Tellurium was discovered by Franz Muller von Reichenstein in 1782 and first isolated by Martin Heinrich Klaproth in 1798. In its elemental form, tellurium has a silvery lustrous gray appearance. The tellurium atom has a radius of 140 pm and a Van der Waals radius of 206 pm. Elemental TelluriumTellurium is most commonly sourced from the anode sludges produced as a byproduct of copper refining. The name Tellurium originates from the Greek word Tellus, meaning Earth.

Bismuth

See more Bismuth products. Bismuth (atomic symbol: Bi, atomic number: 83) is a Block P, Group 15, Period 6 element with an atomic radius of 208.98040. The number of electrons in each of Bismuth's shells is 2, 8, 18, 32, 18, 5 and its electron configuration is [Xe] 4f14 5d10 6s2 6p3. Bismuth Bohr ModelThe bismuth atom has a radius of 156 pm and a Van der Waals radius of 207 pm. In its elemental form, bismuth is a silvery white brittle metal. Bismuth is the most diamagnetic of all metals and, with the exception of mercury, its thermal conductivity is lower than any other metal. Elemental BismuthBismuth has a high electrical resistance, and has the highest Hall Effect of any metal (i.e., greatest increase in electrical resistance when placed in a magnetic field). Bismuth is found in bismuthinite and bismite. It is also produced as a byproduct of lead, copper, tin, molybdenum and tungsten extraction. Bismuth was first discovered by Early Man. The name Bismuth originates from the German word 'wissmuth,' meaning white mass.

Related Forms & Applications