Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay.

Title Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay.
Authors B. Yuan; X. Jiang; C. Yao; M. Bao; J. Liu; Y. Dou; Y. Xu; Y. He; K. Yang; Y. Ma
Journal Anal Chim Acta
DOI 10.1016/j.aca.2016.11.059
Abstract

Metal-enhanced fluorescence shows great potential for improving the sensitivity of fluoroscopy, which has been widely used in protein and nucleic acid detection for biosensor and bioassay applications. In comparison with the traditional glass-supported metal nanoparticles (MNPs), the introduction of a silicon substrate has been shown to provide an increased surface-enhanced Raman scattering (SERS) effect due to the coupling between the MNPs and the semiconducting silicon substrate. In this work, we further study the fluorescence-enhanced effect of the silicon-supported silver-island (Ag@Si) plasmonic chips. In particular, we investigate their practical application of improving the traditional immunoassay such as the biotin-streptavidin-based protein assay and the protein-/nucleic acid-labeled cell and tissue samples. The protein assay shows a wavelength-dependent enhancement effect of the Ag@Si chip, with an enhancement factor ranging from 1.2 (at 532 nm) to 57.3 (at 800 nm). Moreover, for the protein- and nucleic acid-labeled cell and tissue samples, the Ag@Si chip provides a fluorescence enhancement factor of 3.0-4.1 (at 800 nm) and a significant improvement in the signal/background ratio for the microscopy images. Such a ready accommodation of the fluorescence-enhanced effect for the immunoassay samples with simple manipulations indicates broad potential for applications of the Ag@Si chip not only in biological studies but also in the clinical field.

Citation B. Yuan; X. Jiang; C. Yao; M. Bao; J. Liu; Y. Dou; Y. Xu; Y. He; K. Yang; Y. Ma.Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay.. Anal Chim Acta. 2017;955:98107. doi:10.1016/j.aca.2016.11.059

Related Elements

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.