Skip to main content

Praseodymium Barium Copper Oxide Sputtering Target

CAS #: 120305-22-8
Linear Formula:
PrBa2Cu3Ox
MDL Number
MFCD00213950
EC No.:
N/A

ORDER

Product Product Code ORDER SAFETY DATA Technical data
(2N) 99% Praseodymium Barium Copper Oxide Sputtering Target PRBA-CUO-02-ST SDS > Data Sheet >
(3N) 99.9% Praseodymium Barium Copper Oxide Sputtering Target PRBA-CUO-03-ST SDS > Data Sheet >
(4N) 99.99% Praseodymium Barium Copper Oxide Sputtering Target PRBA-CUO-04-ST SDS > Data Sheet >
(5N) 99.999% Praseodymium Barium Copper Oxide Sputtering Target PRBA-CUO-05-ST SDS > Data Sheet >
WHOLESALE/SKU 0000-742-{{nid}}

Praseodymium Barium Copper Oxide Sputtering Target Properties (Theoretical)

Molecular Weight 875.1
Appearance Target
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A

Praseodymium Barium Copper Oxide Sputtering Target Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Statements N/A
Transport Information N/A

About Praseodymium Barium Copper Oxide Sputtering Target

High Purity (99.99%) Praseodymium Barium Copper Oxide Sputtering TargetAmerican Elements specializes in producing high purity Praseodymium Barium Copper Oxide Sputtering Targets with the highest possible density and smallest possible average grain sizes for use in semiconductor, chemical vapor deposition (CVD) and physical vapor deposition (PVD) display and optical applications. Our standard Sputtering Targets for thin film are available monoblock or bonded with planar target dimensions and configurations up to 820 mm with hole drill locations and threading, beveling, grooves and backing designed to work with both older sputtering devices as well as the latest process equipment, such as large area coating for solar energy or fuel cells and flip-chip applications. Research sized targets are also produced as well as custom sizes and alloys. All targets are analyzed using best demonstrated techniques including X-Ray Fluorescence (XRF), Glow Discharge Mass Spectrometry (GDMS), and Inductively Coupled Plasma (ICP). "Sputtering" allows for thin film deposition of an ultra high purity sputtering metallic or oxide material onto another solid substrate by the controlled removal and conversion of the target material into a directed gaseous/plasma phase through ionic bombardment. Materials are produced using crystallization, solid state and other ultra high purification processes such as sublimation. American Elements specializes in producing custom compositions for commercial and research applications and for new proprietary technologies. Please contact us for information on lead time and pricing above."

Synonyms

Praseodymium barium copper oxide (1-2-3), Praseodymium barium cuprate, PrBCO, REBCO, (RE)BCO

Chemical Identifiers

Linear Formula PrBa2Cu3Ox
MDL Number MFCD00213950
EC No. N/A
Beilstein/Reaxys No.
Chemical Formula
Molecular Weight
Standard InchI
Appearance
Melting Point
Boiling Point
Density

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

See more Barium products. Barium (atomic symbol: Ba, atomic number: 56) is a Block S, Group 2, Period 6 element with an atomic weight of 137.27. The number of electrons in each of barium's shells is [2, 8, 18, 18, 8, 2] and its electron configuration is [Xe] 6s2. Barium Bohr ModelBarium is a member of the alkaline-earth metals. The barium atom has a radius of 222 pm and a Van der Waals radius of 268 pm. Barium was discovered by Carl Wilhelm Scheele in 1772 and first isolated by Humphry Davy in 1808. Elemental BariumIn its elemental form, barium is a soft, silvery-gray metal. Industrial applications for barium include acting as a "getter," or unwanted gas remover, for vacuum tubes, and as an additive to steel and cast iron. Barium is also alloyed with silicon and aluminum in load-bearing alloys. The main commercial source of barium is the mineral barite (BaSO4); it does not occur naturally as a free element . The name barium is derived from the Greek word "barys," meaning heavy.

See more Copper products. Copper Bohr Model Copper (atomic symbol: Cu, atomic number: 29) is a Block D, Group 11, Period 4 element with an atomic weight of 63.546. The number of electrons in each of copper's shells is 2, 8, 18, 1 and its electron configuration is [Ar]3d10 4s1. The copper atom has a radius of 128 pm and a Van der Waals radius of 186 pm. Copper was first discovered by Early Man prior to 9000 BC. In its elemental form, copper has a reddish-orange metallic and lustrous appearance. Of all pure metals, only silver Elemental Copperhas a higher electrical conductivity. The origin of the word copper comes from the Latin word 'cuprium' which translates as "metal of Cyprus," as the Mediterranean island of Cyprus was known as an ancient source of mined copper.

See more Praseodymium products. Praseodymium (atomic symbol: Pr, atomic number: 59) is a Block F, Group 3, Period 6 element with an atomic weight of 140.90765. Praseodymium Bohr Model The number of electrons in each of praseodymium's shells is 2, 8, 18, 21, 8, 2 and its electron configuration is [Xe]4f3 6s2. The praseodymium atom has a radius of 182 pm and a Van der Waals radius of 239 pm. Praseodymium resembles the typical trivalent rare earths, however, it will exhibit a +4 state when stabilized in a zirconia host. Elemental PraseodymiumUnlike other rare-earth metals, which show antiferromagnetic and / or ferromagnetic ordering at low temperatures, praseodymium is paramagnetic at any temperature above 1 K. Praseodymium is found in the minerals monazite and bastnasite. Praseodymium was discovered by Carl Auer von Welsbach in 1885. The origin of the element name comes from the Greek words prasios didymos, meaning green twin.