Praseodymium(II) Sulfide

CAS #:

Linear Formula:

PrS

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
Praseodymium(II) Sulfide
PR2-S-01-C
Pricing > SDS > Data Sheet >

Praseodymium(II) Sulfide Properties (Theoretical)

Compound Formula PrS
Molecular Weight 172.97
Appearance Crystalline solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Crystal Phase / Structure octahedral
Exact Mass 172.879724 g/mol
Monoisotopic Mass 172.879724 g/mol
Charge +1

Praseodymium(II) Sulfide Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Praseodymium(II) Sulfide

Praseodymium(II) Sulfide (Praseodymium Monosulfide) is generally immediately available in most volumes. High purity, submicron and nanopowder forms may be considered. American Elements produces to many standard grades when applicable, including Mil Spec (military grade); ACS, Reagent and Technical Grade; Food, Agricultural and Pharmaceutical Grade; Optical Grade, USP and EP/BP (European Pharmacopoeia/British Pharmacopoeia) and follows applicable ASTM testing standards. Typical and custom packaging is available. Additional technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Praseodymium(II) Sulfide Synonyms

Praseodymium(II) sulphide, praseodymium(II) monosulfide

Chemical Identifiers

Linear Formula PrS
MDL Number N/A
EC No. N/A
Pubchem CID 59893827
IUPAC Name sulfanylidenepraseodymium(1+)
SMILES S=[Pr+]
InchI Identifier InChI=1S/Pr.S/q+1;
InchI Key IPORBXPTMCGNIG-UHFFFAOYSA-N

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Praseodymium

See more Praseodymium products. Praseodymium (atomic symbol: Pr, atomic number: 59) is a Block F, Group 3, Period 6 element with an atomic weight of 140.90765. Praseodymium Bohr Model The number of electrons in each of praseodymium's shells is 2, 8, 18, 21, 8, 2 and its electron configuration is [Xe]4f3 6s2. The praseodymium atom has a radius of 182 pm and a Van der Waals radius of 239 pm. Praseodymium resembles the typical trivalent rare earths, however, it will exhibit a +4 state when stabilized in a zirconia host. Elemental PraseodymiumUnlike other rare-earth metals, which show antiferromagnetic and / or ferromagnetic ordering at low temperatures, praseodymium is paramagnetic at any temperature above 1 K. Praseodymium is found in the minerals monazite and bastnasite. Praseodymium was discovered by Carl Auer von Welsbach in 1885. The origin of the element name comes from the Greek words prasios didymos, meaning green twin.

Sulfur

See more Sulfur products. Sulfur (or Sulphur) (atomic symbol: S, atomic number: 16) is a Block P, Group 16, Period 3 element with an atomic radius of 32.066. Sulfur Bohr ModelThe number of electrons in each of Sulfur's shells is 2, 8, 6 and its electron configuration is [Ne] 3s2 3p4. In its elemental form, sulfur has a light yellow appearance. The sulfur atom has a covalent radius of 105 pm and a Van der Waals radius of 180 pm. In nature, sulfur can be found in hot springs, meteorites, volcanoes, and as galena, gypsum, and epsom salts. Sulfur has been known since ancient times but was not accepted as an element until 1777, when Antoine Lavoisier helped to convince the scientific community that it was an element and not a compound.

Recent Research

TODAY'S TOP DISCOVERY!

November 12, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions

CityUHK researchers discover method to reduce energy loss in metal nanostructures by altering their geometrical dimensions