Reactivity of an amidinato silylene and germylene toward germanium(ii), tin(ii) and lead(ii) halides.

Title Reactivity of an amidinato silylene and germylene toward germanium(ii), tin(ii) and lead(ii) halides.
Authors Y.L. Shan; B.X. Leong; H.W. Xi; R. Ganguly; Y. Li; K.Hwa Lim; C.W. So
Journal Dalton Trans
DOI 10.1039/c7dt00051k
Abstract

The coordination chemistry of an amidinato silylene and germylene toward group 14 element(ii) halides is described. The reaction of the amidinato silicon(ii) amide [LSiN(SiMe3)2] (1, L = PhC(NtBu)2) with SnCl2 and PbBr2 afforded the amidinato silylene-dichlorostannylene and -dibromoplumbylene adducts [L{(Me3Si)2N}SiEX2] (E = Sn, X = Cl (2); E = Pb, X = Br (3)), respectively, in which there is a lone pair of electrons on the Sn(ii) and Pb(ii) atoms. X-ray crystallography, NMR spectroscopy and theoretical studies show conclusively that the Si(ii)-E(ii) bonds are donor-acceptor interactions. Similar electronic structures were found in the amidinato germylene-dichlorogermylene and -dichlorostannylene adducts [L{(Me3Si)2N}GeECl2] (E = Ge (5), Sn (6)), which were prepared by treatment of the amidinato germanium(ii) amide [LGeN(SiMe3)2] (4) with GeCl2·dioxane and SnCl2, respectively.

Citation Y.L. Shan; B.X. Leong; H.W. Xi; R. Ganguly; Y. Li; K.Hwa Lim; C.W. So.Reactivity of an amidinato silylene and germylene toward germanium(ii), tin(ii) and lead(ii) halides.. Dalton Trans. 2017;46(11):36423648. doi:10.1039/c7dt00051k

Related Elements

Germanium

See more Germanium products. Germanium (atomic symbol: Ge, atomic number: 32) is a Block P, Group 14, Period 4 element with an atomic weight of 72.63. Germanium Bohr ModelThe number of electrons in each of germanium's shells is 2, 8, 18, 4 and its electron configuration is [Ar] 3d10 4s2 4p2. The germanium atom has a radius of 122.5 pm and a Van der Waals radius of 211 pm. Germanium was first discovered by Clemens Winkler in 1886. In its elemental form, germanium is a brittle grayish white semi-metallic element. Germanium is too reactive to be found naturally on Earth in its native state. High Purity (99.999%) Germanium (Ge) MetalIt is commercially obtained from zinc ores and certain coals. It is also found in argyrodite and germanite. It is used extensively as a semiconductor in transitors, solar cells, and optical materials. Other applications include acting an alloying agent, as a phosphor in fluorescent lamps, and as a catalyst. The name Germanium originates from the Latin word "Germania" meaning "Germany."

Lead

Lead Bohr ModelSee more Lead products. Lead (atomic symbol: Pb, atomic number: 82) is a Block P, Group 14, Period 6 element with an atomic radius of 207.2. The number of electrons in each of Lead's shells is [2, 8, 18, 32, 18, 4] and its electron configuration is [Xe] 4f14 5d10 6s2 6p2. The lead atom has a radius of 175 pm and a Van der Waals radius of 202 pm. In its elemental form, lead has a metallic gray appearance. Lead occurs naturally as a mixture of four stable isotopes: 204Pb (1.48%), 206Pb (23.6%), 207Pb (22.6%), and 208Pb (52.3%). Elemental LeadLead is obtained mainly from galena (PbS) by a roasting process. Anglesite, cerussite, and minim are other common lead containing minerals. Lead does occur as a free element in nature, but it is rare. It is a dense, soft metal that is very resistant to corrosion and poorly conductive compared to other metals. Its density and low melting point make it useful in applications such as electrolysis and industrial materials.

Tin

Tin Bohr ModelSee more Tin products. Tin (atomic symbol: Sn, atomic number: 50) is a Block P, Group 14, Period 5 element with an atomic weight of 118.710. The number of electrons in each of tin's shells is 2, 8, 18, 18, 4 and its electron configuration is [Kr] 4d10 5s2 5p2. The tin atom has a radius of 140.5 pm and a Van der Waals radius of 217 pm.In its elemental form, tin has a silvery-gray metallic appearance. It is malleable, ductile and highly crystalline. High Purity (99.9999%) Tin (Sn) MetalTin has nine stable isotopes and 18 unstable isotopes. Under 3.72 degrees Kelvin, Tin becomes a superconductor. Applications for tin include soldering, plating, and such alloys as pewter. The first uses of tin can be dated to the Bronze Age around 3000 BC in which tin and copper were combined to make the alloy bronze. The origin of the word tin comes from the Latin word Stannum which translates to the Anglo-Saxon word tin. For more information on tin, including properties, safety data, research, and American Elements' catalog of tin products, visit the Tin element page.