A Novel Synthetic Compound, Bismuth Zinc Citrate, Could Potentially Reduce Cisplatin-Induced Toxicity Without Compromising the Anticancer Effect Through Enhanced Expression of Antioxidant Protein.

Author(s) Chan, S.; Wang, R.; Man, K.; Nicholls, J.; Li, H.; Sun, H.; Chan, G.ChiFung
Journal Transl Oncol
Date Published 2019 May
Abstract

Cisplatin is a common anticancer drug, but it comes with significant nephrotoxicity. Further cisplatin-induced oxidative stress contributes to the pathogenesis of the nephrotoxicity. A new compound, BiZn, can potentially prevent this complication. We verified our postulation by in vitro and in vivo models. From our findings, BiZn did not affect cisplatin-induced cytotoxicity on neuroblastoma cells under both in vitro and in vivo settings. However, BiZn significantly reduced the blood urea nitrogen and creatinine levels in cisplatin-treated mice. Under the lethal dosage of cisplatin, co-treatment of BiZn significantly increased the survival rate. BiZn stimulated antioxidant proteins metallothionein (MT) and glutathione (GSH) generation from kidney cells and minimized cisplatin-induced apoptosis. Knocking down MT-IIA and inhibiting GSH abolished such protection. In conclusion, pretreatment of BiZn decreased cisplatin-induced renal toxicity without affecting its antitumor activity. BiZn-induced antioxidant proteins MT and GSH may contribute to the renal protection effect.

DOI 10.1016/j.tranon.2019.02.003
ISSN 1936-5233
Citation Chan S, Wang R, Man K, Nicholls J, Li H, Sun H, et al. A Novel Synthetic Compound, Bismuth Zinc Citrate, Could Potentially Reduce Cisplatin-Induced Toxicity Without Compromising the Anticancer Effect Through Enhanced Expression of Antioxidant Protein. Transl Oncol. 2019;12(5):788-799.