A Porous Aromatic Framework Functionalized with Luminescent Iridium(III) Organometallic Complexes for Turn-on Sensing of TcO.

Author(s) Xu, D.; Chen, L.; Dai, X.; Li, B.; Wang, Y.; Liu, W.; Li, J.; Tao, Y.; Wang, Y.; Liu, Y.; Peng, G.; Zhou, R.; Chai, Z.; Wang, S.
Journal ACS Appl Mater Interfaces
Date Published 2020 Mar 04

Contamination of 99TcO4-, a problematic radioactive anion in the nuclear fuel cycle, in groundwater has been observed in series of legacy nuclear sites, representing a notable radiation hazard and environmental concern. Development of convenient, rapid, and sensitive detection methods is therefore critical for radioactivity control and remediation tasks. Traditional detection methods suf-fer from clear demerits of either presence of large interference from coexisting radioactive species (e.g. radioactivity counting methods) or requirement of extensive instrumentation and analysis procedure (e.g. mass spectrometry). Here, we constructed a luminescent iridium(III) organometallic complex (Ir(ppy)2(bpy)+, ppy = 2-phenylpyridine, bpy = 2,2'-bipyridine) grafted porous aromatic framework (Ir-PAF) for the first time, which can be utilized for efficient, facile, and selective detection of trace ReO4-/TcO4- in aqueous solutions. Importantly, the luminescence intensity of Ir-PAF is greatly enhanced in the presence of ReO4-/TcO4-, giving rise to a distinct turn-on sensor with the detection limit of 556.9 μg/L. Such a superior detection capability originates from the highly selective and strong interaction between ReO4-/TcO4- and Ir(ppy)2(bpy)+, leading to an efficient pre-enrichment of ReO4-/TcO4- during analysis and subsequently a much weaker nonradiative decay of the luminescence of Ir(ppy)2(bpy)+, as illustrated by density functional theory (DFT) calculation as well as quantum yield and fluorescent lifetime measurements. Successful quantifica-tion of trace ReO4- in simulated Hanford Low Activity Waste (LAW) solution containing large excess of Cl-, NO3-, and NO2- was demonstrated, highlighting the bright future of luminescent PAFs in the area of chemical sensing.

DOI 10.1021/acsami.0c01929
ISSN 1944-8252
Citation ACS Appl Mater Interfaces. 2020.

Related Applications, Forms & Industries