A ratiometric detection of heparin with high sensitivity based on aggregation-enhanced emission of gold nanoclusters triggered by silicon nanoparticles.

Author(s) Qu, F.; Xia, W.; Xia, L.; You, J.; Han, W.
Journal Talanta
Date Published 2019 Feb 01
Abstract

Heparin (Hep) is a widely applied anticoagulant and the quantification of heparin concentration is pivotal for clinical use. In this work, silicon nanoparticles (SiNPs) modified by the amino groups and glutathione-capped gold nanoclusters (GSH-AuNCs) are able to self-assemble into spherical particle structures via the electrostatic interaction, resulting in the aggregation-enhanced emission (AEE) of GSH-AuNCs. However, Hep, a highly sulfated glycosaminoglycan with much more negative charges, can bind with the SiNPs and inhibit the aggregation. As a result, it causes the AEE quenching of GSH-AuNCs at 570 nm but the SiNPs keep their own blue fluorescence at 450 nm. Thus, the SiNPs can act as an internal reference and the GSH-AuNCs are used as a signal probe in this process. The ratiometric fluorescent signal (I/I) change of the nanohybrid probe is positively correlated with Hep concentrations in the range from 6.44 ng/mL to 96.6 ng/mL with the detection limit of 3.29 ng/mL. As expected, this strategy shows good sensitivity and selectivity, and it is also successfully applied to detect Hep in Hep sodium injection and human serum samples with good recoveries.

DOI 10.1016/j.talanta.2018.09.098
ISSN 1873-3573
Citation Qu F, Xia W, Xia L, You J, Han W. A ratiometric detection of heparin with high sensitivity based on aggregation-enhanced emission of gold nanoclusters triggered by silicon nanoparticles. Talanta. 2019;193:37-43.

Related Applications, Forms & Industries