Skip to main content
A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.
Title A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.
Authors Xiao, X.; Conghaile, P.Ó.; Leech, D.; Ludwig, R.; Magner, E.
Journal Biosens Bioelectron
DOI 10.1016/j.bios.2016.11.012
Abstract

The integration of supercapacitors with enzymatic biofuel cells (BFCs) can be used to prepare hybrid devices in order to harvest significantly higher power output. In this study, a supercapacitor/biofuel cell hybrid device was prepared by the immobilisation of redox enzymes with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer [Os(2,2'-bipyridine)2(polyvinylimidazole)10Cl](+/2+)(Os(bpy)2PVI) on dealloyed nanoporous gold. The thickness of the deposition layer can be easily controlled by tuning the deposition conditions. Once charged by the internal BFC, the device can be discharged as a supercapacitor at a current density of 2mAcm(-2) providing a maximum power density of 608.8μWcm(-2), an increase of a factor of 468 when compared to the power output from the BFC itself. The hybrid device exhibited good operational stability for 50 charge/discharge cycles and ca. 7h at a discharge current density of 0.2mAcm(-2). The device could be used as a pulse generator, mimicking a cardiac pacemaker delivering pulses of 10μA for 0.5ms at a frequency of 0.2Hz.