Cerium Oxide Nanocrystal Embedded Bimodal Micro-Mesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries.

Author(s) Ma, L.; Chen, R.; Zhu, G.; Hu, Y.; Wang, Y.; Chen, T.; Liu, J.; Jin, Z.
Journal ACS Nano
Date Published 2017 Jul 06

For developing lithium-sulfur (Li-S) batteries, it is critical to design advanced cathode materials with high sulfur loading/utilization ratios and strong binding interactions with sulfur species to prevent the dissolution of intermediate polysulfides. Here we report an effective sulfur host material prepared by implanting cerium oxide (CeO2) nanocrystals homogeneously into well-designed bimodal micro-mesoporous nitrogen-rich carbon (MMNC) nanospheres. With the high conductivity and abundant hierarchical pore structures, MMNC nanospheres can effectively storage and entrap sulfur species. Moreover, the inserted polar and electrocatalytically-active CeO2 nanocrystals and high nitrogen content of MMNC can synergistically solve the hurdle of the polysulfide dissolution and furthermore significantly promoting stable redox activity. By combining these advantages, CeO2/MMNC cathodes with 1.4 mg cm-2 sulfur exhibit high reversible capacities (1,066 mAh g-1 at 0.2 C after 200 cycles and 836 mAh g-1 at 1.0 C after 500 cycles), good rate capability (737 mAh g-1 at 2.0 C), and high cycle stability (721 mAh g-1 at 2.0 C after 1,000 cycles with a low capacity decay of 0.024% per cycle). Furthermore, a high and stable reversible capacity of 611 mAh g-1 is achieved after cycling for 200 cycles with higher sulfur loading of 3.4 mg cm-2.

DOI 10.1021/acsnano.7b03227
ISSN 1936-086X
Citation ACS Nano. 2017.

Related Applications, Forms & Industries