Author(s) Wagner, T.; Menges, F.; Riel, H.; Gotsmann, B.; Stemmer, A.
Journal Beilstein J Nanotechnol
Date Published 2018
Abstract

As electronic devices are downsized, physical processes at the interface to electrodes may dominate and limit device performance. A crucial step towards device optimization is being able to separate such contact effects from intrinsic device properties. Likewise, an increased local temperature due to Joule heating at contacts and the formation of hot spots may put limits on device integration. Therefore, being able to observe profiles of both electronic and thermal device properties at the nanoscale is important. Here, we show measurements by scanning thermal and Kelvin probe force microscopy of the same 60 nm diameter indium arsenide nanowire in operation. The observed temperature along the wire is substantially elevated near the contacts and deviates from the bell-shaped temperature profile one would expect from homogeneous heating. Voltage profiles acquired by Kelvin probe force microscopy not only allow us to determine the electrical nanowire conductivity, but also to identify and quantify sizable and non-linear contact resistances at the buried nanowire-electrode interfaces. Complementing these data with thermal measurements, we obtain a device model further permitting separate extraction of the local thermal nanowire and interface conductivities.

DOI 10.3762/bjnano.9.15
ISSN 2190-4286
Citation Beilstein J Nanotechnol. 2018;9:129136.

Related Applications, Forms & Industries