Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors.

Author(s) Abliz, A.; Gao, Q.; Wan, D.; Liu, X.; Xu, L.; Liu, C.; Jiang, C.; Li, X.; Chen, H.; Guo, T.; Li, J.; Liao, L.
Journal ACS Appl Mater Interfaces
Date Published 2017 Mar 29

Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm(2)/(V s) and small shifts of threshold voltage (Vth). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the Vth and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO2 interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.

DOI 10.1021/acsami.6b15275
ISSN 1944-8252
Citation ACS Appl Mater Interfaces. 2017;9(12):1079810804.

Related Applications, Forms & Industries