Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure.

Author(s) Gorges, C.; Rodríguez, L.V.; Balabanski, D.L.; Bissell, M.L.; Blaum, K.; Cheal, B.; Ruiz, R.F.Garcia; Georgiev, G.; Gins, W.; Heylen, H.; Kanellakopoulos, A.; Kaufmann, S.; Kowalska, M.; Lagaki, V.; Lechner, S.; Maaß, B.; Malbrunot-Ettenauer, S.; Nazarewicz, W.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Reinhard, P.G.; Sailer, S.; Sánchez, R.; Schmidt, S.; Wehner, L.; Wraith, C.; Xie, L.; Xu, Z.Y.; Yang, X.F.; Yordanov, D.T.
Journal Phys Rev Lett
Date Published 2019 May 17
Abstract

The change in mean-square nuclear charge radii δ⟨r^{2}⟩ along the even-A tin isotopic chain ^{108-134}Sn has been investigated by means of collinear laser spectroscopy at ISOLDE/CERN using the atomic transitions 5p^{2} ^{1}S_{0}→5p6 s^{1}P_{1} and 5p^{2} ^{3}P_{0}→5p6s ^{3}P_{1}. With the determination of the charge radius of ^{134}Sn and corrected values for some of the neutron-rich isotopes, the evolution of the charge radii across the N=82 shell closure is established. A clear kink at the doubly magic ^{132}Sn is revealed, similar to what has been observed at N=82 in other isotopic chains with larger proton numbers, and at the N=126 shell closure in doubly magic ^{208}Pb. While most standard nuclear density functional calculations struggle with a consistent explanation of these discontinuities, we demonstrate that a recently developed Fayans energy density functional provides a coherent description of the kinks at both doubly magic nuclei, ^{132}Sn and ^{208}Pb, without sacrificing the overall performance. A multiple correlation analysis leads to the conclusion that both kinks are related to pairing and surface effects.

DOI 10.1103/PhysRevLett.122.192502
ISSN 1079-7114
Citation Gorges C, Rodríguez LV, Balabanski DL, Bissell ML, Blaum K, Cheal B, et al. Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure. Phys Rev Lett. 2019;122(19):192502.