Lower soil carbon stocks in exotic vs. native grasslands are driven by carbonate losses.

Author(s) Wilsey, B.; Xu, X.; Polley, W.; Hofmockel, K.; Hall, S.J.
Journal Ecology
Date Published 2020 Mar 05

Global change includes invasion by exotic (non-native) plant species and altered precipitation patterns, and these factors may affect terrestrial carbon (C) storage. We measured soil C changes in experimental mixtures of all exotic or all native grassland plant species under two levels of summer drought stress (0 and +128 mm). After eight years, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments in deeper soils. Total soil C (organic + inorganic) content was significantly higher under native than exotic plantings, and differences increased with depth. Surprisingly, differences after eight years in C were due to carbonate and not organic C fractions, where carbonate was ~ 250 g C m lower to 1 m soil depth under exotic than native plantings. Our results indicate that soil carbonate is an active pool and can respond to differences in plant species traits over timescales of years. Significant losses of inorganic C might be avoided by conserving native grasslands in sub-humid ecosystems.

DOI 10.1002/ecy.3039
ISSN 1939-9170
Citation Ecology. 2020:e03039.

Related Applications, Forms & Industries