Polyarylene Ether Nitrile and Barium Titanate Nanocomposite Plasticized by Carboxylated Zinc Phthalocyanine Buffer.

Author(s) Liu, S.; Liu, C.; Liu, C.; Tu, L.; You, Y.; Wei, R.; Liu, X.
Journal Polymers (Basel)
Date Published 2019 Mar 04
Abstract

Barium titanate (BT) and polyarylene ether nitrile (PEN) nanocomposites with enhanced dielectric properties were obtained by using carboxylatedzinc phthalocyanine (ZnPc-COOH) buffer as the plasticizer. Carboxylated zinc phthalocyanine, prepared through hydrolyzing ZnPc in NaOH solution, reacted with the hydroxyl groups on the peripheral of hydrogen peroxide treated BT (BT-OH) yielding core-shell structured BT@ZnPc. Thermogravimetric analysis (TGA), transmission electron microscopy (TEM), TEM energy dispersive spectrometer mapping, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) demonstrated successful preparation of BT@ZnPc. The fabricated BT@ZnPc was incorporated into the PEN matrix through the solution casting method. Rheological measurements demonstrated that the ZnPc-COOH buffer can improve the compatibility between BT and PEN effectively. With the existence of the ZnPc-COOH buffer, the prepared BT@ZnPc/PEN nanocomposites exhibit a high dielectric constant of 5.94 and low dielectric loss (0.016 at 1000 Hz). BT@ZnPc/PEN dielectric composite films can be easily prepared, presenting great application prospects in the field of organic film capacitors.

DOI 10.3390/polym11030418
ISSN 2073-4360
Citation Polymers (Basel). 2019;11(3).

Related Applications, Forms & Industries