Author(s) Wang, X.; Wang, J.; Pan, J.; Zhao, F.; Kan, D.; Cheng, R.; Zhang, X.; Sun, S.K.
Journal ACS Appl Mater Interfaces
Date Published 2019 Sep 18

Spectral computed tomography (CT) imaging as a novel imaging technique shows promising prospects in the accurate diagnosis of various diseases. However, clinically iodinated contrast agents suffer from poor signal-to-noise ratio, and emerging heavy-metal-based CT contrast agents arouse great biosafety concern. Herein, we show the fabrication of rhenium sulfide (ReS) nanoparticles, a clinic radiotherapy sensitizer, as a biosafe spectral CT contrast agent for the gastrointestinal tract imaging and tumor theranostics in vivo by teaching old drugs new tricks. The ReS nanoparticles were fabricated in a one-pot facile method at room temperature, and exhibited sub-10 nm size, favorable monodispersity, admirable aqueous solubility, and strong X-ray attenuation capability. More importantly, the proposed nanoparticles possess an outstanding spectral CT imaging ability and undoubted biosafety as a clinic therapeutic agent. Besides, the ReS nanoparticles possess appealing photothermal performance due to their intense near-infrared absorption. The proposed nano-agent not only guarantees obvious contrast enhancement in gastrointestinal tract spectral CT imaging in vivo, but also allows effective CT imaging-guided tumor photothermal therapy. The proposed "teaching old drugs new tricks" strategy shortens the time and cuts the cost required for clinical application of nano-agents based on existing clinical toxicology testing and trial results, and lays down a low-cost, time-saving, and energy-saving method for the development of multifunctional nano-agents toward clinical applications.

DOI 10.1021/acsami.9b10479
ISSN 1944-8252
Citation ACS Appl Mater Interfaces. 2019;11(37):3365033658.

Related Applications, Forms & Industries