Author(s) Firmino, A.D.G.; Mendes, R.F.; Antunes, M.M.; Barbosa, P.C.; Vilela, S.M.F.; Valente, A.A.; Figueiredo, F.M.L.; Tomé, J.P.C.; Paz, F.A.Almeida
Journal Inorg Chem
Date Published 2017 Feb 06

Phosphonate- and yttrium-based metal-organic frameworks (MOFs), formulated as [Y(H5btp)]·5.5H2O (1), [Y(H5btp)]·2.5H2O (2), (H3O)[Y2(H5btp)(H4btp)]·H2O (3), and [Y(H5btp)]·H2O·0.5(MeOH) (4), were prepared using a "green" microwave-assisted synthesis methodology which promoted the self-assembly of the tetraphosphonic organic linker [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonic acid) (H8btp) with Y(3+) cations. This new family of functional materials, isolated in bulk quantities, exhibits a remarkable breathing effect. Structural flexibility was thoroughly studied by means of X-ray crystallography, thermogravimetry, variable-temperature X-ray diffraction, and dehydration and rehydration processes, ultimately evidencing a remarkable reversible single-crystal to single-crystal (SC-SC) transformation solely through the loss and gain of crystallization solvent molecules. Topologically, frameworks remained unaltered throughout this interconversion mechanism, with all compounds being binodal 6,6-connected network with a Schäfli symbol of {4(13).6(2)}{4(8).6(6).8}. Results show that this is one of the most stable and thermally robust families of tetraphosphonate-based MOFs synthesized reported to date. Porous materials 2 and 3 were further studied to ascertain their performance as heterogeneous catalysts and proton conductors, respectively, with outstanding results being registered for both materials. Compound 2 showed a 94% conversion of benzaldehyde into (dimethoxymethyl)benzene after just 1 h of reaction, among the best results registered to date for MOF materials. On the other hand, the protonic conductivity of compound 3 at 98% of relative humidity (2.58 × 10(-2) S cm(-1)) was among the highest registered among MOFs, with the great advantage of the material to be prepared using a simpler and sustainable synthesis methodology, as well as exhibiting a good stability at ambient conditions (temperature and humidity) over time when compared to others.

DOI 10.1021/acs.inorgchem.6b02199
ISSN 1520-510X
Citation Inorg Chem. 2017;56(3):11931208.

Related Applications, Forms & Industries