Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline.

Author(s) Cai, X.; Zhang, K.; Xie, X.; Zhu, X.; Feng, J.; Jin, Z.; Zhang, H.; Tian, M.; Chen, H.
Journal Biomaterials
Date Published 2020 Feb
Abstract

Alzheimer's disease (AD) is a prevalent chronic neurodegenerative disease. However, to date, none of the developed drug candidates targeting at a single therapeutic target of AD have achieved success in clinical trials. Herein, we proposed a hypothesis of hollow manganese Prussian white nanocapsules (HMPWCs)-mediated attenuation of Tau-related pathology and alleviation of cognitive decline via simultaneously alleviating neuroinflammation, scavenging reactive oxygen species, and reducing hyperphosphorylated Tau proteins. The HMPWCs self-assemblied with manganese Prussian white analogue and bovine serum albumin via a novel biomimetic mineralization present good biocompatibility, variable valence states, and low oxidation-reduction potential. They own the outstanding capabilities of relieving oxidative stress, inhibiting Tau neuropathology, and counteracting neuroinflammation, which could be used to treat Tau-related AD-like neurodegeneration. Importantly, they can also attenuate the cognitive impairments of Tau-related AD-like rats without significant side effects. This research takes the advantages of catalytic chemistry, nanomedicine and specific neurodegenerative microenvironment together, providing an alternative efficient treatment strategy for Tau-related neurodegeneration diseases, such as AD, Pick's disease, frontotemporal dementia, Creutzfeldt-Jakob Disease and progressive supranuclear palsy.

DOI 10.1016/j.biomaterials.2019.119678
ISSN 1878-5905
Citation Cai X, Zhang K, Xie X, Zhu X, Feng J, Jin Z, et al. Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials. 2020;231:119678.