Single particle mass spectrometry of titanium and niobium carbonitride precipitates in steels.

Author(s) Hegetschweiler, A.; Borovinskaya, O.; Staudt, T.; Kraus, T.
Journal Anal Chem
Date Published 2018 Nov 27
Abstract

We introduce a new method for the characterization of particles extracted from steels. Microalloyed steels were dissolved to extract niobium and titanium carbonitride particles that are of critical importance for the mechanical properties of the steel. Size distribution and chemical composition of the particles were analyzed by single particle inductively coupled plasma mass spectrometry and compared to electron microscopy. Mass spectrometry rapidly provided data on a large number of particles (> 2000 in 1 min) and indicated two particle populations that differ in size and composition: smaller particles contained only niobium, while larger particles contained both niobium and titanium. Electron microscopy of a much smaller particle number confirmed the results and indicated that larger particles had complex, overgrown structures. The combination of single-particle mass spectrometry and electron microscopy enables a better understanding of the precipitation processes that form the particles during steel production at different stages of the thermomechanical rolling process. A better understanding of the processes helps to improve the rolling process in order to exploit the alloying elements optimally.

DOI 10.1021/acs.analchem.8b04012
ISSN 1520-6882
Citation Hegetschweiler A, Borovinskaya O, Staudt T, Kraus T. Single particle mass spectrometry of titanium and niobium carbonitride precipitates in steels. Anal Chem. 2018.

Related Applications, Forms & Industries