Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications.

Author(s) Youssef, A.M.; El-Nahrawy, A.M.; Hammad, A.B.Abou
Journal Int J Biol Macromol
Date Published 2017 Apr
Abstract

Hybrid Chitosan/Poly ethylene glycol/calcium silicate (CS/PEG/calcium silicate) nanocomposite modified with different two types, zinc oxide nanoparticles (ZnO-NPs) and tartrazine dye (E102) were prepared by sol gel method and the characterization of their structure and biological properties were carried out in order to evaluate the possible use in optical and biomedical fields. The hybrid CS/PEG/calcium silicate complex formations have been established by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analysis. The spheres-like chitosan-PEG/calcium silicate and modified with both ZnO-NPs and (E102) were obtained with optimum concentration of 11% ZnO-NPs and 0.3gm (E102) dyes. Spheres-like particle shape of these nanocomposites from SEM images, higher UV absorption in the region of 200-300nm by UV-vis absorption spectrophotometer are recorded. The fabricate CS/PEG/calcium silicate nanocomposites and doped with ZnO-NPs and tetrazine were studied contrary to gram positive (Staphylococcus aureus), gram negative (Pseudomonas aeruginosa) bacteria, fungi (Candidia albicans) and Aspargillus niger via the agar plate method. The obtained results indicated that the prepared CS-PEG/calcium silicate nanocomposites have good antibacterial properties agnist G(+ve), G(-ve) bacteria and fungi, so that it could be a promised candidate in various optical and in biological applications as well as packaging application.

DOI 10.1016/j.ijbiomac.2017.01.059
ISSN 1879-0003
Citation Youssef AM, El-Nahrawy AM, Hammad AB. Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. Int J Biol Macromol. 2017;97:561-567.

Related Applications, Forms & Industries