The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency.

Author(s) Zhao, T.; Tan, L.; Huang, W.; Wang, J.
Journal Environ Pollut
Date Published 2019 Apr
Abstract

Microplastics pose a great threat to entire marine ecosystems, but little is known about their impacts on phytoplankton, especially for the harmful dinoflagellates. In this study, effects of micro polyvinyl chloride (mPVC) on the growth, chlorophyll content and photosynthetic efficiency of the dinoflagellate Karenia mikimotoi at different periods (0, 24, 48, 72 and 96 h) were assessed using gradient concentrations (0, 5, 25, 50 and 100 mg L) of mPVC with a size of 1 μm. PVC microplastics had dose-dependent adverse effects on K. mikimotoi growth, chlorophyll content and photosynthetic efficiency. The density of algal cell decreased with increasing mPVC concentrations and the highest inhibitory rate (IR) was 45.8% at 24 h under 100 mg L of mPVC. The total chlorophyll content and chlorophyll content in a single algal cell decreased at 96 h and the ФPSⅡ and Fv/Fm decreased 25.3% and 17.1%, respectively. The SEM images provided an intuitive visual method to observe the behaviors and interactions between microplastics and microalgae. It was found from the SEM images that microalgae was wrapped by microplastic beads. The physical blockage and aggregation were also responsible for the cytotoxicity of K. mikimotoi. Our study clarified that PVC microplastics can reduce algal growth, chlorophyll content and photosynthetic efficiency, and it is beneficial to evaluate the possible impact of plastics on aquatic ecosystems.

DOI 10.1016/j.envpol.2019.01.114
ISSN 1873-6424
Citation Zhao T, Tan L, Huang W, Wang J. The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency. Environ Pollut. 2019;247:883-889.

Related Applications, Forms & Industries