Titanate Fibroin Nanocomposites: A Novel Approach for the Removal of Heavy-Metal Ions from water.

Author(s) Magrì, D.; Caputo, G.; Perotto, G.; Scarpellini, A.; Colusso, E.; Drago, F.; Martucci, A.; Athanassiou, A.; Fragouli, D.
Journal ACS Appl Mater Interfaces
Date Published 2018 Jan 10
Abstract

In this study, we report the fabrication of nanocomposites made of titanate nanosheets immobilized in a solid matrix of regenerated silk fibroin as novel heavy-metal-ion removal systems. The capacity of these nanocomposite films to remove lead, mercury, and copper cations from water was investigated, and as shown by the elemental quantitative analysis performed, their removal capacity is 73 mmol/g for all of the ions tested. We demonstrate that the nanocomposites can efficiently retain the adsorbed ions, with no release of titanate nanosheets occurring even after several exposure cycles to ionic solutions, eliminating the risk of release of potentially hazardous nanosubstances to the environment. We also prove that the introduction of sodium ions in the nanocomposite formulation makes the materials highly selective toward the lead ions. The developed biopolymer nanocomposites can be potentially used for the efficient removal of heavy-metal-ion pollutants from water and, thanks to their physical and optical characteristics, offer the possibility to be used in sensor applications.

DOI 10.1021/acsami.7b15440
ISSN 1944-8252
Citation Magrì D, Caputo G, Perotto G, Scarpellini A, Colusso E, Drago F, et al. Titanate Fibroin Nanocomposites: A Novel Approach for the Removal of Heavy-Metal Ions from water. ACS Appl Mater Interfaces. 2018;10(1):651-659.

Related Applications, Forms & Industries