Treatment of Contaminated Groundwater via Arsenate Removal Using Chitosan-Coated Bentonite.

Author(s) Yee, J.J.; Arida, C.Vic Justo; Futalan, C.Morales; de Luna, M.Daniel Gar; Wan, M.W.
Journal Molecules
Date Published 2019 Jul 04
Abstract

In the present research, treatment of contaminated groundwater via adsorption of As(V) with an initial concentration of 50.99 µg/L using chitosan-coated bentonite (CCB) was investigated. The effect of adsorbent mass (0.001 to 2.0 g), temperature (298 to 328 K), and contact time (1 to 180 min) on the removal efficiency was examined. Adsorption data was evaluated using isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevich. Isotherm study showed that the Langmuir ( > 0.9899; ≤ 0.91; ≤ 4.87) model best correlates with the experimental data. Kinetics studies revealed that pseudo-second order equation adequately describes the experimental data ( ≥ 0.9951; ≤ 0.8.33; ≤ 4.31) where equilibrium was attained after 60 min. Thermodynamics study shows that the As(V) adsorption is non-spontaneous (Δ ≥ 0) and endothermic (Δ = 8.31 J/mol) that would result in an increase in randomness (Δ = 29.10 kJ/mol•K) within the CCB-solution interface. FT-IR analysis reveals that hydroxyl and amino groups are involved in the adsorption of As(V) from groundwater. Results of the present research serve as a tool to determine whether CCB is an environmentally safe and cost effective material that could be utilized in a permeable reactive barrier system for the remediation of As(V) from contaminated groundwater.

DOI 10.3390/molecules24132464
ISSN 1420-3049
Citation Yee J-, Arida CV, Futalan CM, de Luna MD, Wan M-. Treatment of Contaminated Groundwater via Arsenate Removal Using Chitosan-Coated Bentonite. Molecules. 2019;24(13).

Related Applications, Forms & Industries