Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device.

Author(s) Seo, H.Jun; Jeong, W.; Lee, S.; Moon, G.Dae
Journal Nanoscale
Date Published 2018 Mar 28

We demonstrated a flexible resistive switching device based on ultrathin AgTe nanowire (NW) films and Au nanosheet (NS) electrodes by exploiting a monolayer assembly on the water surface for macroscale two-dimensional structures. Firstly, ultrathin TeNWs (diameter ≈ 10 nm) are rapidly assembled on the water surface as a form of monolayer and transferred to fabricate TeNW films on various substrates with any available size. An assembled TeNW film was used as a template to produce a AgTeNW film through chemical transformation. A well-aligned AgTeNW film device showed reversible resistive switching properties when the Ag composition of the silver telluride NW becomes stoichiometric AgTe. Additionally, a non-stoichiometric AgTeNW film shows an increased On/Off ratio. For a flexible memory device, ultrathin AuNSs (thickness ≤20 nm) were adopted as working electrodes, since thermally deposited gold electrodes tend to crack under strain, which can fail to maintain the electrical properties. A paper-like flexibility of AuNS proved its capability as optimal electrodes of ultrathin AgTeNW film-based resistive memory devices.

DOI 10.1039/c8nr01429a
ISSN 2040-3372
Citation Nanoscale. 2018;10(12):54245430.

Related Applications, Forms & Industries