Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn-Air Batteries.

Author(s) Park, J.; Park, M.; Nam, G.; Kim, M.Gyu; Cho, J.
Journal Nano Lett
Date Published 2017 Jun 02
Abstract

Zn-air batteries suffer from the slow kinetics of oxygen reduction reaction (ORR) and/or oxygen evolution reaction (OER). Thus, the bifunctional electrocatalysts are required for the practical application of rechargeable Zn-air batteries. In terms of the catalytic activity and structural stability, pyrochlore oxides (A2[B2-xAx]O7-y) have emerged as promising candidates. However, a limited use of A-site cations (e.g., lead or bismuth cations) of reported pyrochlore catalysts have hampered broad understanding of their catalytic effect and structure. More seriously, the catalytic origin of the pyrochlore structure was not clearly revealed yet. Here, we report the new nanocrystalline yttrium ruthenate (Y2[Ru2-xYx]O7-y) with pyrochlore structure. The prepared pyrochlore oxide demonstrates comparable catalytic activities in both ORR and OER, compared to that of previously reported metal oxide-based catalysts such as perovskite oxides. Notably, we first find that the catalytic activity of the Y2[Ru2-xYx]O7-y is associated with the oxidations and corresponding changes of geometric local structures of yttrium and ruthenium ions during electrocatalysis, which were investigated by in situ X-ray absorption spectroscopy (XAS) in real-time. Zn-air batteries using the prepared pyrochlore oxide achieve highly enhanced charge and discharge performance with a stable potential retention for 200 cycles.

DOI 10.1021/acs.nanolett.7b01812
ISSN 1530-6992
Citation Park J, Park M, Nam G, Kim MG, Cho J. Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn-Air Batteries. Nano Lett. 2017.

Related Applications, Forms & Industries