Sm-Eu-Gd Concentrate
ORDER
Product | Product Code | ORDER | SAFETY DATA | Technical data |
---|---|---|---|---|
(2N) 99% Sm-Eu-Gd Concentrate | SMO-EUOGDO-02-CONC | Pricing Add to cart only | SDS > | Data Sheet > |
(3N) 99.9% Sm-Eu-Gd Concentrate | SMO-EUOGDO-03-CONC | Pricing Add to cart only | SDS > | Data Sheet > |
(4N) 99.99% Sm-Eu-Gd Concentrate | SMO-EUOGDO-04-CONC | Pricing Add to cart only | SDS > | Data Sheet > |
(5N) 99.999% Sm-Eu-Gd Concentrate | SMO-EUOGDO-05-CONC | Pricing Add to cart only | SDS > | Data Sheet > |
Sm-Eu-Gd Concentrate Properties (Theoretical)
Appearance | Solid |
---|---|
Melting Point | N/A |
Boiling Point | N/A |
Density | N/A |
Solubility in H2O | N/A |
Sm-Eu-Gd Concentrate Health & Safety Information
Signal Word | N/A |
---|---|
Hazard Statements | N/A |
Hazard Codes | N/A |
Risk Codes | N/A |
Safety Statements | N/A |
Transport Information | N/A |
About Sm-Eu-Gd Concentrate
Synonyms
Sm-Eu-Gd Concentrate Oxide; (SEG)2O3; samarium europium gadolinium concentrate; Samarium oxide-europium oxide-gadolinium oxide
Chemical Identifiers
Linear Formula | Sm2O3 / Eu2O3 / Gd2O3 |
---|---|
Beilstein/Reaxys No. | |
Chemical Formula | |
Molecular Weight | |
Standard InchI | |
Appearance | |
Melting Point | |
Boiling Point | |
Density |
Customers For Sm-Eu-Gd Concentrate Have Also Viewed
Related Applications, Forms & Industries for Sm-Eu-Gd Concentrate
Packaging Specifications
Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.
Related Elements
See more Europium products. Europium (atomic symbol: Eu, atomic number: 63) is a Block F, Group 3, Period 6 element with an atomic radius of 151.964. The number of electrons in each of Europium's shells is 2, 8, 18, 25, 8, 2 and its electron configuration is [Xe]4f7 6s2. The europium atom has an atomic radius of 180 pm and a Van der Waals radius of 233 pm. Europium was discovered by Eugène-Anatole Demarçay in 1896, however, he did not isolate it until 1901. Europium was named after the continent of Europe. Europium is a member of the lanthanide or rare earth series of metals. In its elemental form, it has a silvery-white appearance but it is rarely found without oxide discoloration. Europium is found in many minerals including bastnasite, monazite, xenotime and loparite. It is not found in nature as a free element.
See more Gadolinium products. Gadolinium (atomic symbol: Gd, atomic number: 64) is a Block F, Group 3, Period 6 element with an atomic radius of 157.25. The number of electrons in each of Gadolinium's shells is [2, 8, 18, 25, 9, 2] and its electron configuration is [Xe] 4f7 5d1 6s2. The gadolinium atom has a radius of 180 pm and a Van der Waals radius of 237 pm. Gadolinium was discovered by Jean Charles Galissard de Marignac in 1880 and first isolated by Lecoq de Boisbaudran in 1886. In its elemental form, gadolinium has a silvery-white appearance. Gadolinium is a rare earth or lanthanide element that possesses unique properties advantageous to specialized applications such as semiconductor fabrication and nuclear reactor shielding. It is utilized for both its high magnetic moment (7.94μ B) and in phosphors and scintillator crystals. When complexed with EDTA ligands, it is used as an injectable contrast agent for MRIs. The element is named after the Finnish chemist and geologist Johan Gadolin.
See more Samarium products. Samarium (atomic symbol: Sm, atomic number: 62) is a Block F, Group 3, Period 6 element with an atomic radius of 150.36. The number of electrons in each of samarium's shells is 2, 8, 18, 24, 8, 2 and its electron configuration is [Xe]4f6 6s2. The samarium atom has a radius of 180 pm and a Van der Waals radius of 229 pm. In its elemental form, samarium has a silvery-white appearance. Samarium is not found as free element in nature. It is found in the minerals cerite, gadolinite, samarskite, monazite and bastnäsite. Samarium is classified as a rare earth element and is the 40th most abundant element in the Earth's crust. Samarium was discovered and first isolated by Lecoq de Boisbaudran in 1879. It is named after the mineral samarskite, the mineral from which it was isolated.
Recent Research
TODAY'S TOP DISCOVERY™!
Los Angeles, CA