Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI.

Title Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI.
Authors B.A. Berkowitz; R.H. Podolsky; J. Lenning; N. Khetarpal; C. Tran; J.Y. Wu; A.M. Berri; K. Dernay; F. Shafie-Khorassani; R. Roberts
Journal Invest Ophthalmol Vis Sci
DOI 10.1167/iovs.17-21850
Abstract

Purpose: We identify noninvasive biomarkers that measure the severity of oxidative stress within retina layers in sodium iodate (SI)-atrophy vulnerable (C57BL/6 [B6]) and SI-atrophy resistant (129S6/SvEvTac [S6]) mice.

Methods: At 24 hours after administering systemic SI to B6 and S6 mice we measured: (1) superoxide production in whole retina ex vivo, (2) excessive free radical production in vivo based on layer-specific 1/T1 values before and after ?-lipoic acid (ALA) administration while the animal was inside the magnet (QUEnch-assiSTed MRI [QUEST MRI]), and (3) visual performance (optokinetic tracking) ± antioxidants; control mice were similarly assessed. Retinal layer spacing and thickness in vivo also were evaluated (optical coherence tomography, MRI).

Results: SI-treated B6 mice retina had a significantly higher superoxide production than SI-treated S6 mice. ALA-injected SI-treated B6 mice had reduced 1/T1 in more retinal layers in vivo than in SI-treated S6 mice. Uninjected and saline-injected SI-treated B6 mice had similar transretinal 1/T1 profiles. Notably, the inner segment layer 1/T1 of SI-treated B6 mice was responsive to ALA but was unresponsive in SI-treated S6 mice. In both SI-treated strains, antioxidants improved contrast sensitivity to similar extents; antioxidants did not change acuity in either group. Retinal thicknesses were normal in both SI-treated strains at 24 hours after treatment.

Conclusions: QUEST MRI uniquely measured severity of excessive free radical production within retinal layers of the same subject. Identifying the mechanisms underlying genetic vulnerabilities to oxidative stress is expected to help in understanding the pathogenesis of retinal degeneration.

Citation B.A. Berkowitz; R.H. Podolsky; J. Lenning; N. Khetarpal; C. Tran; J.Y. Wu; A.M. Berri; K. Dernay; F. Shafie-Khorassani; R. Roberts.Sodium Iodate Produces a Strain-Dependent Retinal Oxidative Stress Response Measured In Vivo Using QUEST MRI.. Invest Ophthalmol Vis Sci. 2017;58(7):32863293. doi:10.1167/iovs.17-21850

Related Elements

Iodine

See more Iodine products. Iodine (atomic symbol: I, atomic number: 53) is a Block P, Group 17, Period 5 element with an atomic radius of 126.90447. The number of electrons in each of Iodine's shells is 2, 8, 18, 18, 7 and its electron configuration is [Kr] 4d10 5s2 5p5. The iodine atom has a radius of 140 pm and a Van der Waals radius of 198 pm. In its elemental form, iodine has a lustrous metallic gray appearance as a solid and a violet appearance as a gas or liquid solution. Elemental IodineIodine forms compounds with many elements, but is less active than the other halogens. It dissolves readily in chloroform, carbon tetrachloride, or carbon disulfide. Iodine compounds are important in organic chemistry and very useful in the field of medicine. Iodine was discovered and first isolated by Bernard Courtois in 1811. The name Iodine is derived from the Greek word "iodes" meaning violet.

Sodium

Sodium Bohr ModelSee more Sodium products. Sodium (atomic symbol: Na, atomic number: 11) is a Block D, Group 5, Period 4 element with an atomic weight of 22.989769. The number of electrons in each of Sodium's shells is [2, 8, 1] and its electron configuration is [Ne] 3s1. The sodium atom has a radius of 185.8 pm and a Van der Waals radius of 227 pm. Sodium was discovered and first isolated by Sir Humphrey Davy in 1807. In its elemental form, sodium has a silvery-white metallic appearance. It is the sixth most abundant element, making up 2.6 % of the earth's crust. Sodium does not occur in nature as a free element and must be extracted from its compounds (e.g., feldspars, sodalite, and rock salt). The name Sodium is thought to come from the Arabic word suda, meaning "headache" (due to sodium carbonate's headache-alleviating properties), and its elemental symbol Na comes from natrium, its Latin name.

Related Forms & Applications