Structural Stability and Evolution of Medium-Sized Tantalum-Doped Boron Clusters: A Half-Sandwich-Structured TaB12- Cluster.

Title Structural Stability and Evolution of Medium-Sized Tantalum-Doped Boron Clusters: A Half-Sandwich-Structured TaB12- Cluster.
Authors B. Le Chen; W.Guo Sun; X.Yu Kuang; C. Lu; X.Xin Xia; H.Xiao Shi; G. Maroulis
Journal Inorg Chem
DOI 10.1021/acs.inorgchem.7b02585
Abstract

Transition-metal (TM)-doped boron clusters have received considerable attention in recent years, in part, because of their remarkable size-dependent structural and electronic properties. However, the structures of medium-sized boron clusters doped with TM atoms are still not well-known because of the much increased complexity of the potential surface as well as the rapid increase in the number of low-energy isomers, which are the challenges in cluster structural searches. Here, by means of an unbiased structure search, we systematically investigated the structural evolution of medium-sized tantalum-doped boron clusters, TaBn0/- (n = 10-20). The results revealed that TaBn0/- (n = 10-15) clusters adopt half-sandwich molecular geometries, with the notable exception of TaB10-, while for n = 16-18 and 19-20, the lowest-energy clusters are characterized by drum-type geometries and tubular molecules with two B atoms on the top, respectively. Good agreement between the calculated and experimental photoelectron spectra strongly support the validity of our global minimum structures. Molecular orbital and adaptive natural density partitioning analyses indicate that the enhanced stability of half-sandwich TaB12- is due to the strong interaction of the Ta atom (5d orbitals) with surrounding B atoms (2p orbitals) and ? B-B bonds in the B12 moiety.

Citation B. Le Chen; W.Guo Sun; X.Yu Kuang; C. Lu; X.Xin Xia; H.Xiao Shi; G. Maroulis.Structural Stability and Evolution of Medium-Sized Tantalum-Doped Boron Clusters: A Half-Sandwich-Structured TaB12- Cluster.. Inorg Chem. 2018;57(1):343350. doi:10.1021/acs.inorgchem.7b02585

Related Elements

Tantalum

See more Tantalum products. Tantalum (atomic symbol: Ta, atomic number: 73) is a Block D, Group 5, Period 6 element with an atomic weight of 180.94788. Tantalum Bohr ModelThe number of electrons in each of tantalum's shells is [2, 8, 18, 32, 11, 2] and its electron configuration is [Xe] 4f14 5d3 6s2. The tantalum atom has a radius of 146 pm and a Van der Waals radius of 217 pm. High Purity (99.999%) Tantalum (Ta) MetalTantalum was first discovered by Anders G. Ekeberg in 1802 in Uppsala, Sweden however, it was not until 1844 when Heinrich Rose first recognized it as a distinct element. In its elemental form, tantalum has a grayish blue appearance. Tantalum is found in the minerals tantalite, microlite, wodginite, euxenite, and polycrase. Due to the close relation of tantalum to niobium in the periodic table, Tantalum's name originates from the Greek word Tantalos meaning Father of Niobe in Greek mythology.

Boron

See more Boron products. Boron Bohr ModelBoron (atomic symbol: B, atomic number: 5) is a Block P, Group 13, Period 2 element with an atomic weight of 10.81. The number of electrons in each of boron's shells is 2, 3 and its electron configuration is [He] 2s2 2p1. The boron atom has a radius of 90 pm and a Van der Waals radius of 192 pm. Boron was discovered by Joseph Louis Gay-Lussac and Louis Jacques Thénard in 1808 and was first isolated by Humphry Davy later that year. Boron is classified as a metalloid is not found naturally on earth. Elemental BoronAlong with carbon and nitrogen, boron is one of the few elements in the periodic table known to form stable compounds featuring triple bonds. Boron has an energy band gap of 1.50 to 1.56 eV, which is higher than that of either silicon or germanium. The name Boron originates from a combination of carbon and the Arabic word buraqu meaning borax.