Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 ?-ethinylestradiol.

Title Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 ?-ethinylestradiol.
Authors T.Nhung Tran; D.G. Kim; S.O. Ko
Journal J Hazard Mater
DOI 10.1016/j.jhazmat.2017.10.045
Abstract

While biogenic manganese oxide (BMO) generated via the oxidation of Mn(II) by the Mn-oxidizing bacteria (MOB) have received attention, the relative roles of biological activity by MOB themselves were not clearly investigated. In this study, the synergistic effects of BMO and MOB Pseudomonas putida strain MnB1 on the degradation of 17?-ethinylestradiol (EE2) was investigated. Experiments with BMO in the presence of P. putida MnB1 showed 15-fold higher removal than that with BMO alone, suggesting that EE2 degradation was mediated by the biological activity of MOB as well as abiotic reaction by BMO. Trapping experiments with pyrophosphate (PP) proved that Mn(III) intermediate formed during the biological process from Mn (II) to Mn (IV) contribute much to the EE2 removal. Also, sharp decreases in EE2 removal were observed when microbial activity was inactivated by heat treatment or sodium azide. From this study, the EE2 removal mechanisms by BMO in the presence P. putida MnB1 are described as follows: (1) abiotic oxidation of EE2 by BMO occurs. (2) P. putida MnB1 indirectly oxidizes EE2 by transferring electrons from the Mn (III) intermediate. (3) P. putida MnB1 continuously re-oxidizes the Mn(II) released from the oxidative degradation of EE2 by BMO, generating new Mn(III)-intermediates or BMO.

Citation T.Nhung Tran; D.G. Kim; S.O. Ko.Synergistic effects of biogenic manganese oxide and Mn(II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 ?-ethinylestradiol.. J Hazard Mater. 2018;344:350359. doi:10.1016/j.jhazmat.2017.10.045

Related Elements

Manganese

See more Manganese products. Manganese (atomic symbol: Mn, atomic number: 25) is a Block D, Group 7, Period 4 element with an atomic weight of 54.938045. Manganese Bohr ModelThe number of electrons in each of Manganese's shells is [2, 8, 13, 2] and its electron configuration is [Ar] 3d5 4s2. The manganese atom has a radius of 127 pm and a Van der Waals radius of 197 pm. Manganese was first discovered by Torbern Olof Bergman in 1770 and first isolated by Johann Gottlieb Gahn in 1774. In its elemental form, manganese has a silvery metallic appearance. Elemental ManganeseIt is a paramagnetic metal that oxidizes easily in addition to being very hard and brittle. Manganese is found as a free element in nature and also in the minerals pyrolusite, braunite, psilomelane, and rhodochrosite. The name Manganese originates from the Latin word mangnes, meaning "magnet."

Related Forms & Applications