Terbium Selenide

CAS #:

Linear Formula:

SeTb

MDL Number:

N/A

EC No.:

234-894-0

ORDER

PRODUCT Product Code ORDER SAFETY DATA TECHNICAL DATA
(5N) 99.999% Terbium Selenide Ingot
TB-SE-05-I
Pricing > SDS > Data Sheet >
(5N) 99.999% Terbium Selenide Lump
TB-SE-05-L
Pricing > SDS > Data Sheet >
(5N) 99.999% Terbium Selenide Powder
TB-SE-05-P
Pricing > SDS > Data Sheet >
(5N) 99.999% Terbium Selenide Sputtering Target
TB-SE-05-ST
Pricing > SDS > Data Sheet >

Terbium Selenide Properties (Theoretical)

Compound Formula SeTb
Molecular Weight 237.89
Appearance solid
Melting Point N/A
Boiling Point N/A
Density N/A
Solubility in H2O N/A
Exact Mass N/A
Monoisotopic Mass N/A
Charge N/A

Terbium Selenide Health & Safety Information

Signal Word N/A
Hazard Statements N/A
Hazard Codes N/A
RTECS Number N/A
Transport Information N/A
MSDS / SDS

About Terbium Selenide

Selenide IonTerbium Selenide (TbSe) is a crystal grown product generally immediately available in most volumes. Technical, research and safety (MSDS) information is available as is a Reference Calculator for converting relevant units of measurement.

Terbium Selenide Synonyms

Terbiummonoselenide

Chemical Identifiers

Linear Formula SeTb
MDL Number N/A
EC No. 234-894-0
Beilstein/Reaxys No. N/A
Pubchem CID N/A
IUPAC Name N/A
SMILES N/A
InchI Identifier InChI=1/Se.Tb/rSeTb/c1-2
InchI Key N/A

Packaging Specifications

Typical bulk packaging includes palletized plastic 5 gallon/25 kg. pails, fiber and steel drums to 1 ton super sacks in full container (FCL) or truck load (T/L) quantities. Research and sample quantities and hygroscopic, oxidizing or other air sensitive materials may be packaged under argon or vacuum. Shipping documentation includes a Certificate of Analysis and Safety Data Sheet (SDS). Solutions are packaged in polypropylene, plastic or glass jars up to palletized 440 gallon liquid totes, and 36,000 lb. tanker trucks.

Related Elements

Terbium

See more Terbium products. Terbium (atomic symbol: Tb, atomic number: 65) is a Block F, Group 3, Period 6 element with an atomic radius of 158.92535.Terbium Bohr Model The number of electrons in each of Terbium's shells is [2, 8, 18, 27, 8, 2] and its electron configuration is [Xe]4f9 6s2. The terbium atom has a radius of 177 pm and a Van der Waals radius of 221 pm.Terbium was discovered and first isolated by Carl Gustaf Mosander in 1842. In its elemental form, terbium is a silvery-white soft metal. Terbium is found in cerite, gadolinite, and monazite. It is not found in nature as a free element. Elemental TerbiumTerbium compounds are brightly fluorescent, and a majority of the world's terbium supply is used for creating green phosphors that enable trichromatic lighting technology. It is also frequently used as a dopant for crystalline solid-state devices and fuel cell materials. It is named after Ytterby, the town in Sweden where it was discovered.

Selenium

Selenium Bohr ModelSee more Selenium products. Selenium (atomic symbol: Se, atomic number: 34) is a Block P, Group 16, Period 4 element with an atomic radius of 78.96. The number of electrons in each of Selenium's shells is 2, 8, 18, 6 and its electron configuration is [Ar] 3d10 4s2 4p4. The selenium atom has a radius of 120 pm and a Van der Waals radius of 190 pm. Selenium is a non-metal with several allotropes: a black, vitreous form with an irregular crystal structure three red-colored forms with monoclinic crystal structures and a gray form with a hexagonal crystal structure, the most stable and dense form of the element. Elemental SeleniumOne of the most common uses for selenium is in glass production the red tint that it lends to glass neutralizes green or yellow tints from impurities in the glass materials. Selenium was discovered and first isolated by Jöns Jakob Berzelius and Johann Gottlieb Gahn in 1817. The origin of the name Selenium comes from the Greek word "Selênê," meaning moon.

TODAY'S TOP DISCOVERY!

April 17, 2024
Los Angeles, CA
Each business day American Elements' scientists & engineers post their choice for the most exciting materials science news of the day
University of Waterloo IQC researchers efficiently produce nearly perfect entangled photon pairs from quantum dot sources

University of Waterloo IQC researchers efficiently produce nearly perfect entangled photon pairs from quantum dot sources