Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications.

Title Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications.
Authors H.C. Lin; Y.A. Su; T.Y. Liu; Y.J. Sheng; J.J. Lin
Journal Colloids Surf B Biointerfaces
DOI 10.1016/j.colsurfb.2017.01.046
Abstract

The ternary nanohybrids of silver nanoparticles (AgNPs) in combination with silicate nanoplatelets (NSP) and thermally sensitive poly(N-isopropylacrylamide) (PNiPAAm) were fabricated for antibacterial applications. PNiPAAm were chemically grafted on the NSP by atom-transfer radical polymerization (ATRP) via polymerizing N-isopropylacrylamide monomers with sol-gel linkers (BBTES). The nanoparticles of AgNPs then were adsorbed on NSP-PNiPAAm nanosheets through in situ reduction reaction of AgNO3 in aqueous dispersion. The particle sizes of AgNPs were estimated to be 7-12nm in diameter with different composition ratios of AgNPs to NSP-PNiPAAm, evaluated by transmission electron microscope (TEM). The nanohybrids of AgNP/NSP-PNiPAAm exhibited the unique property of lowest critical solution temperature (LCST) at 32°C. The thermo-responsive antibacterial efficacy of the ternary nanohybrids was demonstrated by Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli) at lower than the LCST (28°C) and higher than the LCST (37°C). The result show that the great antibacterial ability was observed in the hydrophilic bacteria (B. subtilis) at 28°C. In contrast, the excellent antibacterial ability was found in the hydrophobic bacteria (E. coli) at 37°C, due to the surface energy modulation of AgNP/NSP-PNiPAAm. The tailoring of silver-containing ternary nanohybrids allow the new antibacterial nanomaterials to selectively affect the surface of bacteria by varying temperature.

Citation H.C. Lin; Y.A. Su; T.Y. Liu; Y.J. Sheng; J.J. Lin.Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications.. Colloids Surf B Biointerfaces. 2017;152:459466. doi:10.1016/j.colsurfb.2017.01.046

Related Elements

Silicon

See more Silicon products. Silicon (atomic symbol: Si, atomic number: 14) is a Block P, Group 14, Period 3 element with an atomic weight of 28.085. Silicon Bohr MoleculeThe number of electrons in each of Silicon's shells is 2, 8, 4 and its electron configuration is [Ne] 3s2 3p2. The silicon atom has a radius of 111 pm and a Van der Waals radius of 210 pm. Silicon was discovered and first isolated by Jöns Jacob Berzelius in 1823. Silicon makes up 25.7% of the earth's crust, by weight, and is the second most abundant element, exceeded only by oxygen. The metalloid is rarely found in pure crystal form and is usually produced from the iron-silicon alloy ferrosilicon. Elemental SiliconSilica (or silicon dioxide), as sand, is a principal ingredient of glass, one of the most inexpensive of materials with excellent mechanical, optical, thermal, and electrical properties. Ultra high purity silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics industry.The name Silicon originates from the Latin word silex which means flint or hard stone.

Silver

See more Silver products. Silver (atomic symbol: Ag, atomic number: 47) is a Block D, Group 11, Period 5 element with an atomic weight of 107.8682. Silver Bohr ModelThe number of electrons in each of Silver's shells is 2, 8, 18, 18, 1 and its electron configuration is [Kr]4d10 5s1. The silver atom has a radius of 144 pm and a Van der Waals radius of 203 pm. Silver was first discovered by Early Man prior to 5000 BC. In its elemental form, silver has a brilliant white metallic luster. Elemental SilverIt is a little harder than gold and is very ductile and malleable, being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals and possesses the lowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. It is found in copper, copper-nickel, lead, and lead-zinc ores, among others. Silver was named after the Anglo-Saxon word "seolfor" or "siolfur," meaning 'silver'.

Related Forms & Applications