UHPLC-MS and MALDI-MS study of aluminum phthalocyanine chloride and development of a bioanalytical method for its quantification in nanoemulsions and biological matrices.

Title UHPLC-MS and MALDI-MS study of aluminum phthalocyanine chloride and development of a bioanalytical method for its quantification in nanoemulsions and biological matrices.
Authors K.R. Py-Daniel; J. Calvo; C.M.Infante C; O.R.Pires Junior; S.E. Moya; R.B. Azevedo
Journal Talanta
DOI 10.1016/j.talanta.2017.10.057
Abstract

Metal phthalocyanines are promising components in photodynamic therapy. Aluminum phthalocyanine chloride (AlClPc) has been used to treat oral cancer in mice, human carious tissue, lung cancer cells and other conditions. To overcome the high hydrophobicity of AlClPc, phthalocyanine is often encapsulated in nanoformulations. Despite increased usage, little is known about the pharmacokinetics and biodistribution of AlClPc. The aim of this study was the development and validation of a UHPLC-MS method for the determination of AlClPc in solution after extraction from nanoformulations and biological matrices such as plasma and tissue. The described method has been assayed as to selectivity, linearity, limits of detection and quantification, precision and recovery. The present study is the first to describe the behavior of AlClPc in biological matrices with mass spectrometry as well as the first to describe the chromatographic behavior of AlClPc contaminants. Molecular mass analysis identified dechlorination of AlClPc by both LC/MS and MALDI-MS and an adduct formation in LC/MS. The parameters observed indicated that the method has applicability and robustness for use in biodistribution studies.

Citation K.R. Py-Daniel; J. Calvo; C.M.Infante C; O.R.Pires Junior; S.E. Moya; R.B. Azevedo.UHPLC-MS and MALDI-MS study of aluminum phthalocyanine chloride and development of a bioanalytical method for its quantification in nanoemulsions and biological matrices.. Talanta. 2018;179:159166. doi:10.1016/j.talanta.2017.10.057

Related Elements

Aluminum

See more Aluminum products. Aluminum (or Aluminium) (atomic symbol: Al, atomic number: 13) is a Block P, Group 13, Period 3 element with an atomic weight of 26.9815386. It is the third most abundant element in the earth's crust and the most abundant metallic element. Aluminum Bohr Model Aluminum's name is derived from alumina, the mineral from which Sir Humphrey Davy attempted to refine it from in 1812. Aluminum was first predicted by Antoine Lavoisier 1787 and first isolated by Hans Christian Øersted in 1825. Aluminum is a silvery gray metal that possesses many desirable characteristics. It is light, nonmagnetic and non-sparking. It stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used in many industrial applications where a strong, light, easily constructed material is needed. Elemental AluminumAlthough it has only 60% of the electrical conductivity of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but alloyed with small amounts of copper, magnesium, silicon, manganese, or other elements, it imparts a variety of useful properties.

Chlorine

Chlorine is a Block P, Group 17, Period 3 element. Its electron configuration is [Ne]3s23p5. The chlorine atom has a covalent radius of 102±4 pm and its Van der Waals radius is 175 pm. Chlorine ModelIn its elemental form, chlorine is a yellow-green gas. Chlorine is the second lightest halogen after fluorine. It has the third highest electronegativity and the highest electron affinity of all elements, making it a strong oxidizing agent. It is rarely found by itself in nature. Chlorine was discovered and first isolated by Carl Wilhelm Scheele in 1774. It was first recognized as an element by Humphry Davy in 1808.

Nitrogen

See more Nitrogen products. Nitrogen is a Block P, Group 15, Period 2 element. Its electron configuration is [He]2s22p3. Nitrogen is an odorless, tasteless, colorless and mostly inert gas. It is the seventh most abundant element in the universe and it constitutes 78.09% (by volume) of Earth's atmosphere. Nitrogen was discovered by Daniel Rutherford in 1772.

Related Forms & Applications